表面微加工技术克服了体型微加工成本较高和很难做出复杂结构等缺点,成为目前MEMS生产的主流技术。其主要通过深度刻蚀及牺牲层等工艺,让微小的装置中也能制造出精密机械性结构。表面型微加工法已获得业界的肯定,但其控制技术仍然有相当的门槛。其最主要的技术问题在于如何克服薄膜制程的张应力特性,控制结构的平整性;此外,技术的可靠性也是关键,这将影响此技术能否做出商品化的产品。
TEHLMA是ST先进的表面微加工制程,全称是厚垒晶层(Thick Epitaxial Layerfor Micro Gyroscopes and Accelerometer)技术,专门用来生产高灵敏度和较广探测范围的加速度传感器、陀螺仪和机电滤波器 / 谐振器等组件。THELMA的流程主要包括六个主要步骤:基底热氧化、水平互连的沉积与表面图样化(Patterning)、牺牲层(Sacrificial-Layer)的沉积与表面图样化、结构层的垒晶生长、用通道蚀刻将结构层图样化、以及牺牲层的氧化物去除与接触金属化沉积。
3主流MEMS流程
1、体加工工艺
体加工工艺包括去加工(腐蚀)、附着加工(镀膜)、改质加工(掺杂)和结合加工(键合)。主要
介绍腐蚀技术。腐蚀技术主要包括干法腐蚀和湿法腐蚀,也可分为各向同性腐蚀和各向异性腐蚀。 (1)干法腐蚀是气体利用反应性气体或离子流进行的腐蚀。干法腐蚀可以腐蚀多种金属,也可以刻蚀许多非金属材料;既可以各向同性刻蚀,又可以各向异性刻蚀,是集成电路工艺或MEMS工艺常用设备。按刻蚀原理分,可分为等离子体刻蚀(PE:Plasma Etching)、反应离子刻蚀(RIE:Reaction Ion Etching)和电感耦合等离子体刻蚀(ICP:Induction Couple Plasma Etching)。在等离子气体中,可是实现各向同性的等离子腐蚀。通过离子流腐蚀,可以实现方向性腐蚀。
(2)湿法腐蚀是将与腐蚀的硅片置入具有确定化学成分和固定温度的腐蚀液体里进行的腐蚀。硅的各向同性腐蚀是在硅的各个腐蚀方向上的腐蚀速度相等。比如化学抛光等等。常用的腐蚀液是HF-HNO3腐蚀系统,一般在HF和HNO3中加H2O或者CH3COOH。与H2O相比,CH3COOH可以在更广泛的范围内稀释而保持HNO3的氧化能力,因此腐蚀液的氧化能力在使用期内相当稳定。硅的各向异性腐蚀,是指对硅的不同晶面具有不同的腐蚀速率。比如, {100}/{111}面的腐蚀速率比为100:1。基于这种腐蚀特性,可在硅衬底上加工出各种各样的微结构。各向异性腐蚀剂一般分为两类,一类是有机腐蚀剂,包括EPW(乙二胺,邻苯二酸和水)和联胺等。另一类是无机腐蚀剂,包括碱性腐蚀液,如:KOH,NaOH,LiOH,CsOH和NH4OH等。
在硅的微结构的腐蚀中,不仅可以利用各向异性腐蚀技术控制理想的几何形状,而且还可以采用自停止技术来控制腐蚀的深度。比如阳极自停止腐蚀、PN结自停止腐蚀、异质自停止腐蚀、重掺杂自停止腐蚀、无电极自停止腐蚀还有利用光电效应实现自停止腐蚀等等。
2、硅表面微机械加工技术
美国加州大学Berkeley分校的Sensor and Actuator小组首先完成了三层多晶硅表面微机械加工工艺,确立了硅表面微加工工艺的体系。
表面微机械加工是把MEMS的“机械”(运动或传感)部分制作在沉积于硅晶体的表面膜(如多晶硅、氮化硅等)上,然后使其局部与硅体部分分离,呈现可运动的机构。分离主要依靠牺牲层(Sacrifice Layer)技术,即在硅衬底上先沉积上一层最后要被腐蚀(牺牲)掉的膜(如SiO2可用HF腐蚀),再在其上淀积制造运动机构的膜,然后用光刻技术制造出机构图形和腐蚀下面膜的通道,待一切完成后就可以进行牺牲层腐蚀而使微机构自由释放出来。
硅表面微机械加工技术包括制膜工艺和薄膜腐蚀工艺。制膜工艺包括湿法制膜和干式制膜。湿法制膜包括电镀(LIGA工艺)、浇铸法和旋转涂层法、阳极氧化工艺。其中LIGA工艺是利用光制造工艺制作高宽比结构的方法,它利用同步辐射源发出的X射线照射到一种特殊的PMMA感光胶上获得高宽比的铸型,然后通过电镀或化学镀的方法得到所要的金属结构。干式制膜主要包括CVD(Chemical Vapor Deposition)和PVD(Physical Vapor Deposition)。薄膜腐蚀工艺主要是采用湿法腐蚀,所以要选择合适的腐蚀液。
3、结合技术
微加工工艺中有时需要将两块微加工后的基片粘结起来,可以获得复杂的结构,实现更多的功能。将基片结合起来的办法有焊接、融接、压接(固相结合)、粘接、阳极键合、硅直接键合、扩散键合等方法。
4、逐次加工
逐次加工是同时加工工艺的补充,常用于模具等复杂形状的加工,其优点是容易制作自由形状,可对非平面加工,缺点是加工时间很长,属单件生产,成本高。包括以下几种:
逐次除去加工:如用于硅片切割的砂轮加工;细微放电加工、激光束加工、离子束加工、STM(扫描
隧道显微镜)加工。
逐次附着加工:如利用离子束CVD技术,可使仅被照射部分的材料堆积,形成某种结构。
逐次改质加工:比如可以利用电子束或激光照射的办法使基板表面局部改质的技术,它的应用有电子
束掩膜制作、非平面光刻、局部掺杂等。
逐次结合加工:比如IC引线焊接、局部粘结等。
4 LIGA与准LIGA技术
1986年德国W.Ehrfeld教授首先开发了进行三维微细加工最有前途的方法——LIGA技术。 ——LI,Lithographier,即深度X射线刻蚀; ——G,Galvanformug,即电铸成型; ——A,Abformug,即塑料铸膜。
LIGA技术是深度X射线刻蚀、电铸成型、塑料铸膜等技术的完美结合。LIGA工艺问世以来,被认为是最有前途的三维微细加工技术。
1、LIGA技术是微细加工的一种新方法,它的典型工艺流程如上图所示。
(1)深度X射线刻蚀:首先利用深度同步辐射X射线在数百微米后的PMMA光刻胶上刻蚀出较大深宽比的光刻胶图形,高宽比一般达到100。
(2)电铸成型及制膜:利用光刻胶层下面的金属膜作为电极进行电镀,将显影后的光刻胶所形成的三维立体结构间隙用金属填充,直到光刻胶上面完全覆盖了金属为止,形成一个与光刻图形互补稳定的相反结构图形。
(3)注模复制(塑铸)
由于深度X射线光刻的代价太大,所以,在批量生产中,采用子母模的办法。塑铸为大批量生产电铸产品提供了塑料铸模。
2、与传统微细加工方法比,用LIGA技术进行超微细加工有如下特点: (1)可制造有较大深宽比的微结构;
(2)取材广泛,可以是金属、陶瓷、聚合物、玻璃等; (3)可制作任意复杂图形结构,精度高;
(4)可重复复制,符合工业上大批量生产要求,成本低。
3、LIGA技术的应用与发展
(1)德国美茵兹技术研究所(IMM)开发除使用准分子激光烧蚀与LIGA技术结合的新加工工艺。 (2)欧共体1992年启动一个称为MAXIMA多国协作研究项目,目标是研制一个三维集成加速度传感器。它是在X方向、Y方向由LIGA工艺制造的加速度传感器阵列,与在Z方向的硅加速度传感器阵列集成在同一硅片而成,是LIGA技术与硅微机械技术的完美结合。
(3)美国威斯康兴大学HenryGuckel教授领导的研究小组对LIGA技术进行了改进,开发出SLIGA技术。仅仅利用LIGA技术的典型工艺还不能制造出有活动要求的可动微结构。引入牺牲层腐蚀技术,可以大大拓宽LIGA技术应用零用,为任意几何形状可动的三维结构制作开辟了道路。
(4)1995年上海交通大学利用LIGA技术研制出直径2mm的电磁微马达的样机。
(5)上海冶金所用一般厚正性光刻胶,深UV(紫外光)曝光的准LIGA技术,电铸厚的微结构可达10μm,而且零件表面光洁,侧面陡直。
(6)德国Microparts公司已获许应用LIGA技术制造下一代喷墨打印机的喷嘴。这种新型打印机将具有96nm-1分辨率,喷墨密度将是目前一代喷墨打印机的4倍。
4、准LIGA技术
由于LIGA技术需要昂贵的深度同步辐射X射线光源和制作复杂的X光掩模,所以LIGA技术推广应用并不容易,而且与IC工艺不兼容。1993年Allen提出用光敏聚酰亚胺实现准LIGA技术。
准LIGA技术利用常规的紫外光光刻设备和掩模,制作高深比微金属结构的方法。准LIGA的工艺过程除了所用的光刻光源和掩模外,与LIGA工艺基本相同。用准LIGA技术既可以制造高深宽比的微机构,又不需要昂贵的同步辐射X射线源和特制的LIGA掩膜版,对设备的要求低得多;另外,它与集成电路工艺的兼容性也要好的多,因此,准LIGA技术得到了很大的发展。准LIGA工艺流程如图所示。
准LIGA工艺的工艺过程:
(a) 紫外光光刻成模 (b) 电铸或化学镀及制模 (c) 塑铸
5、多层光刻胶工艺在准LIGA工艺中的应用
由于一般情况下用紫外光对光刻胶进行大剂量的曝光时,光刻胶不能太厚,而且显影后光刻胶图形的侧壁陡制度不好。为此,将多层光刻胶工艺应用于准LIGA技术上进行光刻,可以得到较高的光刻分辨率。多层光刻胶工艺有两种,如两层光刻胶工艺、三层光刻胶工艺等。其中,三层光刻胶工艺师应用最多的一种多层光刻胶工艺。
图1所示为三层光刻胶光刻工艺的流程: (1) (2) (3)
首先在硅衬底上涂敷较厚的下层光刻胶并进行烘干,
然后在其上用PECVD方法或溅射、涂敷等方法形成中间介质层。
由于表面已经相当平整,在中间介质层上只需涂敷较薄的上层光刻胶层,以提高光刻的分辨率,并进行前烘,形成三层结构。
(4) (5)
然后对上层光刻胶进行光刻,得到光刻后的图形。
以上层光刻胶的图形作掩蔽,此采用RIE刻蚀下层光刻胶,从而实现光刻图形向下层光刻胶的转移。