哈 尔 滨 理 工 大 学 荣 成 学 院
单片机原理 课程设计
题目:PC与单片机的串口通信 班级:自动化11—3 姓名: 学号:
题目简介
80C51有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。我们采用了三线制连接串口, 也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND.第2脚的RXD.第3脚的TXD。
系统结构图
80C51 MAX232 PC机
目录
原理
硬件介绍
一 AT89C52
二 MAX232芯片 三 9针串口
软件设计
一 工作方式寄存器TMOD 二 串口控制寄存器SCON设置 三 LCD1602显示设置
实验原理图 流程图 实验源程序 课设总结 参考文献
原理
串口通信的概念非常简单,串口按位发送和接收字节。尽管比按字节的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总长不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。典型地,串口用于ASCII码字符的传输。通信使用3根线完成,分别是地线、发送、接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通信的端口,这些参数必须匹配。
a,波特率:这是一个衡量通信速度的参数。它表示每秒钟传送的位的个数。例如300波特表示每秒钟发送300个位。通常电话线的波特率为14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。
b,数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是6、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准 ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。
c,停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。
d,奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。 例如,如果数据是011,那么对于偶校验,校验位为0,保证逻辑高的位数是偶数个。如果是奇校验,校验位为1,这样就有3个逻辑高位。高位和低位不真正的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步。
硬件介绍
一 AT89C52:
AT89C52是51系列单片机的一个型号,它是ATMEL公 司生产的。
AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反 复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器 件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的AT89C52单片
机可为您提供许多较复杂系统控制应用场合。
AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2 个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口 线,AT89C52可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在 线编程)。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写 的Flash存储器可有效地降低开发成本。
AT89C52有PDIP、PQFP/TQFP及PLCC等三种封装形式,以适应不同产品的需求。
二 MAX232芯片:
是MAXIM公司生产的、包含两路接收器和驱动器 的IC芯片,适用于各种EIA-232C和V.28/V.24的通信接口。
MAX232芯片的功能: MAX232内部有一个电源电压变换器,可以把输入的 +5V电源电压变换成为RS-232C输出电平所需的±10V电压。所以,采用此芯片接口的串行通信系统只需单一的+5V电源就可以了。对于没有±12V电源的场合,其适应性更强
图4中,上半部分的的电容C1,C2,C3,C4以及V+,V-是电源变换电路部分。 在实际应用中,器件对电源噪声很敏感。因此,VCC必须要对地加去耦电容C5,电容C1,C2,C3和C4取同样数值的钽电容,用以提高抗干扰能力。在连接时必须尽量靠近器件。下半部分为发送和接收部分。实际应用中T1IN和T2IN 可直接接TTL/CMOS电平的89C52单片机的串行发送端TXD;R1OUT和R2OUT 可直接接TTL/CMOS电平的89C52单片机的的串行接收端;T1OUT和T2OUT可直接接PC的RS-232串口的接收端RXD;R1IN和R2IN直接接PC的RS-232串口的发送端TXD。 三 9针串口:
一个完整的RS-232接口是一个25针的D型插头座,25
针的连接器实际上只有9根连接线,所以就产生了一个简化的9针D型RS-232 插头座,常用的就是一个9针的D型插头座。
EIA-RS-232C对电器特性、逻辑电平和各种信号线功能都作了规定: 在TxD和RxD上:逻辑1(MARK)=-3V~-15V