∴当x?1时,G(x)?G(1)?0 ∴x?lnx 即综上所述,
1a?b?lna?bba?bb?ln?a?bba?bb
.………………………………………………14分
8.(本小题满分12分)
如图,直角坐标系xOy中,一直角三角形ABC,?C?90?,
ByA、C在x轴上且关于原点O对称,D在边BC上,BD?3DC,
的周长为12.若一双曲线E以B、C为焦点,且经过A、
BODCx!ABCD
两点.
(1) 求双曲线E的方程;
(2) 若一过点P(m,0)(m为非零常数)的直线l与双曲线E相交于不同于双曲线顶点的两点M、N,且
????????MP??PN,问在x轴上是否存在定点G,使
?????????????BC?(GM??GN)?若存在,求出所有这样定点G的坐标;若不存在,请说明理由.
解:(1) 设双曲线E的方程为
xa22?yb22?1(a?0,b?0),
yA则B(?c,0),D(a,0),C(c,0).
由BD?3DC,得c?a?3(c?a),即c?2a.
?|AB|?|AC|?16a,?∴?|AB|?|AC|?12?4a, ?|AB|?|AC|?2a.?222BODCx (3分)
解之得a?1,∴c?2,b?3. ∴双曲线E的方程为x?2y23?1. (5分)
.
y?????????????(2) 设在x轴上存在定点G(t,0),使BC?(GM??GN)设直线l的方程为x?m?ky,M(x1,y1),N(x2,y2). 由MP??PN,得y1??y2?0. 即???y1y2B????????GO ① (6分)
CPNx????∵BC?(4,0),
M?????????GM??GN?(x1?t??x2??t,y1??y2), ?????????????∴BC?(GM??GN)?x1?t??(x2?t).
即ky1?m?t??(ky2?m?t). ② 把①代入②,得
2ky1y2?(m?t)(y1?y2)?0
(8分)
③ (9分)
把x?m?ky代入x?2y23?1并整理得
2(3k?1)y?6kmy?3(m?1)?0
22其中3k2?1?0且??0,即k2? y1?y2??6km3k?12213且3k2?m2?1. .
(10分)
,yy?123(m?1)3k?12代入③,得
6k(m?1)3k?122?6km(m?t)3k?12?0,
化简得 kmt?k. 当t?1m时,上式恒成立.
1m?????????????,0),使BC?(GM??GN)因此,在x轴上存在定点G(9.(本小题满分14分)
. (12分)
已知数列?an?各项均不为0,其前n项和为Sn,且对任意n?N*都有(1?p)Sn?p?pan(p为大于1的常数),记f(n)?1?Cna1?Cna2???Cnan2Snn12n.
(1) 求an;
(2) 试比较f(n?1)与
p?12pf(n)的大小(n?N*);
?p?1?p?1??1???p?1?2p???2n?1(3) 求证:(2n?1)f(n)剟f(1)?f(2)???f(2n?1)?(n?N*). ?,??解:(1) ∵(1?p)Sn?p?pan,
①
②
∴(1?p)Sn?1?p?pan?1. ②-①,得
(1?p)an?1??pan?1?pan,
即an?1?pan.
(3分)
在①中令n?1,可得a1?p.
∴?an?是首项为a1?p,公比为p的等比数列,an?pn.
(4分)
(2) 由(1)可得Sn?p(1?p)1?pn?p(p?1)p?1n.
12n122nnnn1?Cna1?Cna2???Cnan?1?pCn?pCn???Cnp?(1?p)?(p?1).
∴f(n)?1?Cna1?Cna2???Cnan2Snp?1p?(p?1)2n?1n?112nn?p?1p?(p?1)nnn2(p?1), (5分)
f(n?1)?(pn?1n?1?1)n?1.
,且p?1,
而
p?12pf(n)?p?1p?(p?1)2(pn?1?p)∴pn?1?1?pn?1?p?0,p?1?0. ∴f(n?1)?p?12p2pf(n),(n?N*).
p?12p
f(n)p?12p (8分)
(3) 由(2)知 f(1)?p?1,f(n?1)?p?12p,(n?N*).
)f(n?2)???(22∴当n…2时,f(n)?f(n?1)?(p?12p2n?1)n?1f(1)?(p?12p)n.
∴f(1)?f(2)???f(2n?1)?p?1?p?1??p?1?????????2p?2p??2p?2n?1
?p?1?p?1???1???p?1?2p?????, ?? (10分)
(当且仅当n?1时取等号).
另一方面,当n…2,k?1,2,?,2n?1时,
k2n?k?p?1?(p?1)(p?1)f(k)?f(2n?k)???kk? 2n?k2n?kp?2(p?1)2(p?1)?…p?1p?2?2n?k2n?k kk2(p?1)2(p?1)nk(p?1)k(p?1)2n?kp?12(p?1)??np21(p?1)(p2n?k?1)
p?12(p?1)??np2n1p2n?p?pk2n?k?1.
∵pk?p2n?k…2pn,∴p2n?pk?p2n?k?1?p2n?2pn?1?(pn?1)2. ∴f(k)?f(2n?k)…2n?1p?1p?2(p?1)nnn2(p?1)?2f(n)2n?1,(当且仅当k?n时取等号).(13分)
.(当且仅当n?1时取等号).
∴?f(k)?k?1122n?1?[f(k)?k?1f(2n?k)]…?f(n)?(2n?1)f(n)k?1综上所述,(2n?1)f(n)剟?f(k)k?12n?1?p?1?p?1??1???p?1?2p???2n?1?(n?N*).(14分) ?,??