北京市海淀区2013届高三上学期期末考试数学理试题

2019-02-15 21:10

北京市海淀区2013届高三第一学期期末考试数学(理)试题 2013.1

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 复数

2化简的结果为 A.1?i B.?1?i C. 1?i D.?1?i 1?i?x?2?t,?x?2cos??1,l:C:t2.已知直线?(为参数)与圆(?为参数),则直线l的倾斜角及圆心C的直角坐??y??2?t?y?2sin?3π3π,(1,0) D.,(?1,0) 44113.向量a?(3,4),b?(x,2), 若a?b?|a|,则实数x的值为 A.?1 B.? C.? D.1

23标分别是 A.,(1,0) B.,(?1,0) C.

4.某程序的框图如图所示, 执行该程序,若输入的p为24,则输出的n,S的值分别为 A.n?4,S?30 B.n?5,S?30 C.n?4,S?45 D.n?5,S?45 5.如图,PC与圆O相切于点C,直线PO交圆O于A,B两点, 弦CD垂直AB于E. 则下面结论中,错误的结论是 ..A.?BEC∽?DEA B.?ACE??ACP C.DE2?OE?EP D.PC2?PA?AB

BOCPπ4π4开始 输入p n?1,S?0 S?p 是 否 S=S+3n 输出n,S 结束 EDAn?n?1 *6.数列?an?满足a1?1,an?1?r?an?r(n?N,r?R且r?0),则“r?1”是“数列?an?成等差数列”的

A.充分不必要条件 B. 必要不充分条件 C.充分必要条件 D. 既不充分也不必要条件 7. 用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为 A. 144 B.120 C. 108 D.72

x2y28. 椭圆C:2?2?1(a?b?0)的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得?F1F2P为

ab1212111等腰三角形,则椭圆C的离心率的取值范围是 A.(,) B.(,1) C. (,1) D.(,)(,1)

3323322二、填空题:本大题共6小题,每小题5分,共30分.

9. 以y??x为渐近线且经过点(2,0)的双曲线方程为__________________.

10.数列{an}满足a1?2,且对任意的m,n?N*,都有

an?m?an,则a3?_____;{an}的前n项和Sn?_________. am111. 在(?3x2)6的展开式中,常数项为__________.(用数字作答)

x12. 三棱锥D?ABC及其三视图中的主视图和左视图如图所示, 则棱BD的长为_________.

AD4C?x?0,?

13. 点P(x,y)在不等式组 ?x?y?3,表示的平面区域内,

?y?x?1?

若点P(x,y)到直线y?kx?1的最大距离为22,则k?________.

2B2主视图23左视图

14. 已知正方体ABCD?A1B1C1D1的棱长为1,动点P在正方体ABCD表面上运动,且PA?r?1A1BC1D11(0?r?3),记点P的轨迹的长度为f(r),则f()?_____;关于r的方程f(r)?k的解的个数可以为________.

2(填上所有可能的值).

三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.

xxx115. (本小题满分13分)已知函数f(x)?3sincos?cos2?,?ABC三个内角A,B,C的对边分别

2222为a,b,c. (I)求f(x)的单调递增区间;(Ⅱ)若f(B?C)?1,a?3,b?1,求角C的大小.

16.(本小题满分13分)汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:

A型车 出租天数 1 2 3 4 5 6 7 B 型 车 出租天数 1 2 3 4 5 6 7 车辆数 14 20 20 16 15 10 5 车辆数 5 10 30 35 15 3 2

(I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率; (Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率; (Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.

17. (本小题满分14分)如图,在直三棱柱ABC?A1B1C1中,?BAC?90?,AB?AC?AA1?2,E是BC中点. (I)求证:A1B//平面AEC1;

(II)若棱AA1上存在一点M,满足B1M?C1E,求AM的长; (Ⅲ)求平面AEC1与平面ABB1A1所成锐二面角的余弦值.

AECA1C1B1B

eax. 18. (本小题满分13分)已知函数f(x)?x?1(I) 当a?1时,求曲线f(x)在(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的单调区间.

19. (本小题满分14分)已知E?2,2?是抛物线C:y2?2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x??2于点M,N.

(Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知O为原点,求证:?MON为定值.

20. (本小题满分13分)已知函数f(x)的定义域为(0,??),若y?阶比增函数”;若y?f(x)在(0,??)上为增函数,则称f(x)为“一xf(x)在(0,??)上为增函数,则称f(x)为“二阶比增函数”. x2我们把所有“一阶比增函数”组成的集合记为?1,所有“二阶比增函数”组成的集合记为?2. (Ⅰ)已知函数f(x)?x3?2hx2?hx,若f(x)??1,且f(x)??2,求实数h的取值范围; (Ⅱ)已知0?a?b?c,f(x)??1且f(x)的部分函数值由下表给出,

x f(x) 求证:d(2d?t?4)?0;

a d b d c a?b?c t 4 (Ⅲ)定义集合??f(x)|f(x)??2,且存在常数k,使得任取x?(0,??),f(x)?k,

??请问:是否存在常数M,使得?f(x)??,?x?(0,??),有f(x)?M成立?若存在,求出M的最小值;若不存在,说明理由.

海淀区高三年级第一学期期末练习

数 学 (理)

一、选择题(本大题共8小题,每小题5分,共40分)

题号 答案 1 A 2 C 3 A 4 B 5 [YJY.COM/]6 A 7 C 8 D D 二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)

三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)

12.42 13.?1 14.9.x2?y2?4 10.8; 2n?1?2 11.135 3π; 0,2,3,4 4xxx1解:(I)因为f(x)?3sincos?cos2?

22223cosx?11?sinx?? 22231?sinx?cosx22π ?sin(x?) ??????6分

6(2kπ? 又y?sinx的单调递增区间为

ππ,2kπ?) ,(k?Z) 22所以令2kπ?πππ2ππ?x??2kπ? 解得2kπ??x?2kπ? 262332ππ,2kπ?) ,(k?Z) ??????8分 33所以函数f(x)的单调增区间为(2kπ?π (Ⅱ) 因为f(B?C)?1,所以sin(B?C?)?1,

6ππ7π又B?C?(0,π),B?C??(,)

6662ππππ ?????10分 所以B?C??,B?C?, 所以A?36231sinBsinA 把a?3,b?1代入,得到sinB? ??????12分 ?由正弦定理

2ba

又b?a,B?A,所以B?ππ,所以C? ??????13分 6616.(本小题满分13分)

解:(I)这辆汽车是A型车的概率约为

出租天数为3天的A型车辆数30??0.6

出租天数为3天的A,B型车辆数总和30?20这辆汽车是A型车的概率为0.6 ???3分 (II)设“事件Ai表示一辆A型车在一周内出租天数恰好为i天”,

“事件Bj表示一辆B型车在一周内出租天数恰好为j天”,其中i,j?1,2,3,...,7 则该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率为

P(A1B3?A2B2?A3B1)?P(A1B3)?P(A2B2)?P(A3B1) ??????5分

?P(A1)P(B3)?P(A2)P(B2)?P(A3)P(B1) ??????7分

52010203014?????100100100100100100

9?125? 该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率为

9 125 ??????9分

(Ⅲ)设X为A型车出租的天数,则X的分布列为

1 2 3 4 X 5 0.15 6 0.03 7 0.02 P 0.05 0.10 0.30 0.35

设Y为B型车出租的天数,则Y的分布列为

Y P =3.621 0.14 2 0.20 3 0.20 4 0.16 5 0.15 6 0.10 7 [Y.COM/]0.05 E(X)?1?0.05?2?0.10?3?0.30?4?0.35?5?0.15?6?0.03?7?0.02

E(Y)?1?0.14?2?0.20?3?0.20?4?0.16?5?0.15?6?0.10?7?0.05

?????12分 =3.4 8一辆A类型的出租车一个星期出租天数的平均值为3.62天,B类车型一个星期出租天数的平均值为3.48天. 从出租天数的数据来看,A型车出租天数的方差小于B型车出租天数的方差,综合分析,选择A类型的出租车更加合理 . ??????13分 17.(本小题满分14分)

(I) 连接A1C交AC1于点O,连接EO


北京市海淀区2013届高三上学期期末考试数学理试题.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:中国石油大学(华东)高技能人才培养学前教育专业介绍

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: