?x?t2?x??cos?22因为?,故y?x,将?代入上式化简得:?sin??cos?;
?y??sin??y?t故曲线C1的极坐标方程为?(2)将
2?2?cos??4?0,曲线C2的极坐标方程为?sin2??cos?.
, y2?x代入x2?y2?2x?4?0得x2?3x?4?0,解得:x?1,x??4(舍去)
当x?1时,y??1,所以C1与C2交点的平面直角坐标为A(1,1),B(1,?1), ∵?A ?1?1?2,?B?1?1?2,tan?A?1,tan?B??1,??0,0???2?,
∴?A??7??7?). ,?B?,故曲线C1与C2交点的极坐标A(2,),B(2,444423.(1)依题意,
?6,x?0?f(x)?|x?2|?|x|?4??6?2x,0?x?2,所求函数图像如图所示:
?2,x?2?
(2)依题意,|x?a|?|x?b|??4(*)而由||x?a|?|x?b||?|x?a?x?b|?|a?b|
故要(*)恒成立,只需?|a?b|??4,即|a?b|???|a?b|?|x?a|?|x?b|?|a?b|,4,可得a?b的取值范围是[?4,4].