基于UC3844通用变频器辅助电源的研究设计
11
源线,进入到电网中,进而会影响到使用这一电网的敏感设备的正常工作;。
变频器输入滤波器,就是为了解决变频器干扰电网的问题,同时,亦能解决变频器遭受电网中的谐波危害所产生的过压、过流、欠压、过载、过热等误报警、误动作、拒动等问题。
输入滤波器的作用:
第一,对变频器产生的谐波进行抑制。
第二,对将要进入变频器的电网中的谐波进行阻止。 第三,抑制电网的换相缺口; 第四,缓和电网中的尖峰脉冲; 第五,有一定的节能效果,约为5~10%;
输出整流滤波器的作用是将变换器输出的高频交流电压整流滤波得到需要的直流电压,同时还防止高频噪声对负载的干扰。 2.变换器
开关电源有两种常用的变换器: ①PWM变换器
脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶 体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。
脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。
电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。其工作原理如图 :
11
基于UC3844通用变频器辅助电源的研究设计
12
S+U1isTVCU0+- 图1-9 PWM变换器原理图
-
多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制
频率为1kHz到200kHz之间。
PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。
对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。 ②DC/DC变换器
DC/DC变换器用于开关电源时,很多情况下要求输入与输出间进行电隔离。这时必须采用变压器进行隔离,称为隔离变换器。这类变换器把直流电压或电流变换为高频方波电压或电流,经变压器升压或降压后,再经整流平滑滤波变为直流电压或电流。因此,这类变换器又称为逆变整流型变换器。
DC/DC变换器有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图所示。
VDCRLVinM2
图1-10 隔离式单端反激转换电路
12
基于UC3844通用变频器辅助电源的研究设计
13
单端反激式变换器又称电感储能式变换器,其变压器兼有储能、变压、隔离三重作用。所谓单端,指变压器磁芯仅工作在其磁滞回线的一侧。当功率开关管S导通时,直流输入电压inU加在初级绕组上,在变压器初级电感线圈中储存能量,由于次级绕组感应电压为上负下正,使二极管D反偏截止,次级绕组中无电流,此时电能转化为磁能存储在初级电感中。当S截止时,初级感应电压极性反向,使次级绕组感应电压极性反转,二极管D导通,储存在变压器中的能量传递给输出电容C,同时给负载供电,磁能转化为电能释放出来。当开关管重新导通时,负载电流由电容C来提供,同时变压器初级绕组重新储能,如此反复。从以上电路分析可以看出,S导通时,次级绕组无电流;S截止时,次级绕组有电流,这就是“反激”的含义。
所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流脉冲电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。 下图是反激式变压器开关电源的简单工作原理图:
图1-11 反激式变压器开关电源原理图
图中变压器的初级绕组与次级绕组同名端相反,inU为输入直流电压,开关S为功
率开关管,C为输出滤波电容,R为负载,L1i为初级绕组电流,L2i为次级绕组电流;oU和oi为输出电压和电流,参考方向如图1-11所示。
反激变换电路由于具有拓扑简单,输入输出电气隔离,升/降压范围广,多路输出负载自动均衡等优点,广泛用于多路输出的机内电源中。在反激变换器中,变压器起着电感和变压器的双重作用,由于变压器磁芯处于直流偏磁状态,为防磁饱和要加入气隙,漏感较大。当功率管关断时,会产生很高的关断电压尖峰。导致开关管的电压应力大,有可能损坏功率管;导通时,电感电流变化率大,电流峰值大,CCM 模式整流二极管反向恢复引起功率开关管开通时高的电流尖峰。因此,必须用箝位电路来限制反激变换器
13
基于UC3844通用变频器辅助电源的研究设计
14
功率开关电压、电流应力。由于反激变换器具有高可靠性、电路拓扑简洁、输入输出电气隔离、升/降压范围宽、易于多路输出等优点。因此,反激变换器是中小功率开关电源理想的电路拓扑,电力电子技术研究人员对此进行了大量的研究。
正反激式变压器开关电源少用一个大储能滤波电感,以及一个续流二极管,因此,反激式变压器开关电源的体积要比正激式变压器开关电源的体积小,且成本也要降低。此外,反激式变压器开关电源输出电压受占空比的调制幅度,相对于正激式变压器开关电源来说要高很多,因此,反激式变压器开关电源要求调控占空比的误差信号幅度比较低,误差信号放大器的增益和动态范围也比较小。也正是由于这些优点,目前,反激式变压器开关电源在家电领域中还是被广泛使用。
反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降。 3.控制电路
开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,在其控制过程中,电源电路中的电感电流未参与控制,是独立变量,开关变换器为二阶系统,而二阶系统是一个有条件的稳定系统;后者是一个电压、电流双闭环控制系统,电感电流不再是一个独立变量,从而使开关变换器成为一个一阶无条件的稳定系统,因而很容易不受约束地得到大的开环增益和完善的小信号、大信号特性。
1.3.4保护电路
开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电
容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流急剧上升。在电源接通瞬间通过很大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。
14
基于UC3844通用变频器辅助电源的研究设计
15
1.3.5开关电源中的辅助电源
开关电源一般由功率主回路、辅助电源和控制回路组成。功率主回路主要用来
给用户负载供电,而开关电源的辅助电源主要用来给功率主回路的控制电路、驱动电路或电源系统的监控电路供电。
辅助电源的设计不但影响到整个电源的体积、效率、稳定性、可靠性和成本,而且还将影响到整个开关电源的设计策略。一个重要的原因就是隔离问题。例如在离线式开关电源中,如果其内部的辅助电源和功率主回路输入共地,那么就需要用光耦或变压器来对输出电压采样信号进行隔离。而如果是内部辅助电源和功率主电路输出共地,则一般不需要对电压采样信号隔离,这时只需对驱动信号隔离。
2 开关电源辅助电源的特点及种类
由于所需辅助电源的功率一般较小,辅助电源应该力求简单、可靠和小巧。根据辅助电源与功率主回路的关系,开关电源中的辅助电源可以分为两大类:
(1)独立型:辅助电源独立于功率主回路。主要用于大功率或中功率电源系统,比如在通讯电源、ATX电源中,需要电源正常或失败信号或电源远程控制的功能时,在功率主回路即使不工作时,辅助电源也要正常供电。下面是几种常见的独立型辅助电源设计方法。
第一种方法: 传统的线性电源作为辅助电源。它是用普通的矽钢片低频变压器降压后,又经过四只二极管全波整流,经C5、C6平滑滤波后加到三端稳压器7815输入端。
这种设计中,低频变压器的体积往往选的足够大,以满足各种安全规范中对绝缘和漏电特性的要求。但由于它的简单、可靠和方便,以及完全的隔离特性,所以在大功率开关电源系统中,低频变压器不会影响到整个电源的尺寸和造价时,它将是一个不错的选择。
第二种方法:一种不用低频变压器降压的简易辅助电源。用两只无极性的高频电容,直接从两路220V(经过输入滤波电路之后)电网电压中取得低频脉动电压,并串联两只电阻限流。然后经过四只二极管全波整流,最后再输入集成稳压器7815,以提供所需电压。IC输入端并联一只稳压二极管箝位,防止浪涌电压损坏7815。
第三种方法:由自激式开关变换器构成非常轻巧的辅助电源,可以方便地产生辅助电源。
(2)非独立型:由主变换器高频变压器输出的一部分构成辅助电源。主要用于中小功率电源系统,有利于减小整个电源的体积,实现小型化,节约成本。特点是辅助电源与主变换器二者的工作状态互相制约。如果辅助电源不给控制电路供电,主变换器将
15