2011年《义务教育数学课程标准》(word版) - 图文(3)

2019-02-16 13:21

(四)正比例、反比例

1.在实际情境中理解比及按比例分配的含义,并能解决简单的问题。 2.通过具体情境,认识成正比例的量和成反比例的量。

3.会根据给出的有正比例关系的数据在方格纸上画图,并会根据其中一个量的值估计另一个量的值(参见例30)。

4.能找出生活中成正比例和成反比例关系量的实例,并进行交流。 (五)探索规律

探索给定情境中隐含的规律或变化趋势(参见例31,例32)。

二、图形与几何

(一)图形的认识

1.结合实例了解线段、射线和直线。

2.体会两点间所有连线中线段最短,知道两点间的距离。

3.知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。 4.结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。 5.通过观察、操作,认识平行四边形、梯形和圆,知道扇形,会用圆规画圆。

6.认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180°。 7.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。 8.能辨认从不同方向(前面、侧面、上面)看到的物体的形状图(参见例33)。

9.通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。 (二)测量

1.能用量角器量指定角的度数,能画指定度数的角,会用三角尺画30°,45°,60°,90°角。 2.探索并掌握三角形、平行四边形和梯形的面积公式,并能解决简单的实际问题。 3.知道面积单位:千米2、公顷。

4.通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式;探索并掌握圆的面积公式,并能解决简单的实际问题。

5.会用方格纸估计不规则图形的面积(参见例34)。

6.通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。

7.结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。

8.体验某些实物(如土豆等)体积的测量方法(参见例35)。 (三)图形的运动

1.通过观察、操作等活动,进一步认识轴对称图形及其对称轴,能在方格纸上画出轴对称图形的对称轴;能在方格纸上补全一个简单的轴对称图形。

- 11 -

2.通过观察、操作等,在方格纸上认识图形的平移与旋转,能在方格纸上按水平或垂直方向将简单图形平移,会在方格纸上将简单图形旋转90°(参见例36)。

3.能利用方格纸按一定比例将简单图形放大或缩小。

4.能从平移、旋转和轴对称的角度欣赏生活中的图案,并运用它们在方格纸上设计简单的图案。 (四)图形与位置

1.了解比例尺;在具体情境中,会按给定的比例进行图上距离与实际距离的换算。 2.能根据物体相对于参照点的方向和距离确定其位置。 3.会描述简单的路线图(参见例37)。

4.在具体情境中,能在方格纸上用数对(限于正整数)表示位置,知道数对与方格纸上点的对应(参见例38)。

三、统计与概率

(一)简单数据统计过程

1.经历简单的收集、整理、描述和分析数据的过程(可使用计算器)。

2.会根据实际问题设计简单的调查表,能选择适当的方法(如调查、试验、测量)收集数据。 3.认识条形统计图、扇形统计图、折线统计图;能用条形统计图、折线统计图直观、有效地表示数据(参见例39)。

4.体会平均数的作用,能计算平均数,能用自己的语言解释其实际意义(参见例39)。

5.能从报纸杂志、电视等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表(参见例40)。

6.能解释统计结果,根据结果作出简单的判断和预测,并能进行交流(参见例39和例41)。 (二)随机现象发生的可能性

1.结合具体情境,了解简单的随机现象;能列出简单的随机现象中所有可能发生的结果(参见例42)。 2.通过试验、游戏等活动,感受随机现象结果发生的可能性是有大小的,能对一些简单的随机现象发生的可能性大小作出定性描述,并能进行交流(参见例42)。

四、综合与实践

1. 经历有目的、有设计、有步骤、有合作的实践活动。

2.结合实际情境,体验发现和提出问题、分析和解决问题的过程。

3.在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。

4. 通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。 (参见例43,例44,例45,例46)

第三学段(7~9年级)

一、数与代数

(一)数与式 1.有理数

(1)理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。

- 12 -

(2)借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义(这里a表示有理数)。

(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。 (4)理解有理数的运算律,能运用运算律简化运算。 (5)能运用有理数的运算解决简单的问题(参见例47)。 2.实数

(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。 (2)了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根。

(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。 (4)能用有理数估计一个无理数的大致范围(参见例48)。

(5)了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值。

(6)了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算(参见例49)。

3.代数式

(1)借助现实情境了解代数式,进一步理解用字母表示数的意义(参见例50)。 (2)能分析简单问题中的数量关系,并用代数式表示。

(3)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。

4.整式与分式

(1)了解整数指数幂的意义和基本性质;会用科学记数法表示数(包括在计算器上表示)。 (2)理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算;能进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)。

(3)能推导乘法公式:(a+b)( a- b) = a2- b2; (a±b)2 = a 2±2ab + b 2,了解公式的几何背景,并能利用公式进行简单计算(参见例51)。

(4)能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)。 (5)了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算。

(二)方程与不等式 1.方程与方程组

(1)能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型(参见例52)。

(2)经历估计方程解的过程(参见例53)。 (3)掌握等式的基本性质。

(4)能解一元一次方程、可化为一元一次方程的分式方程。

- 13 -

(5)掌握代入消元法和加减消元法,能解二元一次方程组。 (6)*1能解简单的三元一次方程组。

(7)理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。 (8)会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。 (9)了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题)。 (10)能根据具体问题的实际意义,检验方程的解是否合理。 2.不等式与不等式组

(1)结合具体问题,了解不等式的意义,探索不等式的基本性质(参见例54)。

(2)能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。

(3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。 (三)函数

1.函数

(1)探索简单实例中的数量关系和变化规律,了解常量、变量的意义。 (2)结合实例,了解函数的概念和三种表示法,能举出函数的实例。 (3)能结合图像对简单实际问题中的函数关系进行分析(参见例55)。 (4)能确定简单实际问题中函数自变量的取值范围,并会求出函数值。

(5)能用适当的函数表示法刻画简单实际问题中变量之间的关系(参见例56)。 (6)结合对函数关系的分析,能对变量的变化情况进行初步讨论(参见例57)。 2.一次函数

(1)结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式(参见例58)。 (2)会利用待定系数法确定一次函数的表达式。

(3)能画出一次函数的图像,根据一次函数的图像和表达式 y = kx + b (k≠0)探索并理解k>0和k<0时,图像的变化情况。

(4)理解正比例函数。

(5)体会一次函数与二元一次方程的关系。 (6)能用一次函数解决简单实际问题。 3.反比例函数

(1)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。

(2)能画出反比例函数的图像,根据图像和表达式 y =

k(k≠0)探索并理解k>0和k<0时,图像的x变化情况。

(3)能用反比例函数解决简单实际问题。 4.二次函数

(1)通过对实际问题的分析,体会二次函数的意义。

(2)会用描点法画出二次函数的图像,通过图像了解二次函数的性质。

(3)会用配方法将数字系数的二次函数的表达式化为

y?a(x?h)2?k的形式,并能由此得到二

次函数图像的顶点坐标,说出图像的开口方向,画出图像的对称轴,并能解决简单实际问题。

(4)会利用二次函数的图像求一元二次方程的近似解。 (5)*知道给定不共线三点的坐标可以确定一个二次函数。 1

凡是打星号的内容是选学内容,不作考试要求。

- 14 -

二、图形与几何

(一)图形的性质 1.点、线、面、角

(1)通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等(参见例59)。 (2)会比较线段的长短,理解线段的和、差,以及线段中点的意义。 (3)掌握基本事实:两点确定一条直线。 (4)掌握基本事实:两点之间线段最短。

(5)理解两点间距离的意义,能度量两点间的距离。 (6)理解角的概念,能比较角的大小。

(7)认识度、分、秒,会对度、分、秒进行简单的换算,并会计算角的和、差。 2.相交线与平行线

(1)理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质。

(2)理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。 (3)理解点到直线的距离的意义,能度量点到直线的距离。 (4)掌握基本事实:过一点有且只有一条直线与已知直线垂直。 (5)识别同位角、内错角、同旁内角。

(6)理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

(7)掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。

(8)掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。 *了解平行线性质定理的证明(参看例60)。

(9)能用三角尺和直尺过已知直线外一点画这条直线的平行线。

(10)探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么两直线平行;平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。

(11)了解平行于同一条直线的两条直线平行。 3.三角形

(1)理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性。 (2)探索并证明三角形的内角和定理。掌握它的推论:三角形的外角等于与它不相邻的两个内角的和。证明三角形的任意两边之和大于第三边。

(3)理解全等三角形的概念,能识别全等三角形中的对应边、对应角。 (4)掌握基本事实:两边及其夹角分别相等的两个三角形全等(参见例61)。 2

2

考试中,只能用下文出现的基本事实和定理作为证明的依据。

- 15 -


2011年《义务教育数学课程标准》(word版) - 图文(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:八年级数学上册12.8基本作图教学设计京改版

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: