ln????时,f??x??0. 当x????,x1?时,f??x??0;当x??x1,a? ln????上有唯一极值点. ∴f?x?在???,a???1?2???2???2?又∵当a???, 0?时,g?2ln?????4??ln????.
?a???a???e???ax2112?x设h?x??lnx?,其中x????e,???,则h??x?????0,
2ax22x?1?e?2???2??2ln?????0. ∴h?x??h?e??1??0,∴4h?x??4??ln?????g?aaa2??????????2???????2???????2?即当a???, 0?时,g?2ln?e?????2????????2????1?2????4?????ln?a???a???2???????0, ?a??而 g?ln?????2?ln????1??0,
aa???上单调递减,∴g?x??f??x?在?ln???,???上有唯一零点x2,∵g?x??f??x?在?ln???,
aa??????2??????2????当x??ln???,x2?时,f??x??0;当x??x2,???时,f??x??0.
a?????上有唯一极值点. ∴f?x?在?ln???,a????2??????2?????2?综上所述,当f?x?有两个极值点时,a???, 0?. ????????12分
e??
(21)(本小题满分12分)
1(Ⅰ)∵f?x??ex?x2?ax,∴f??x??ex?x?a.
2x设g?x??e?x?a,则g??x??ex?1.
令g??x??ex?1?0,解得x?0.
∴当x????, 0?时,g??x??0;当x??0,???时,g??x??0. ∴g?x?min?g?0??1?a.
当a?1时,g?x??f??x??0,∴函数f?x?单调递增,没有极值点;
当a?1时,g?0??1?a?0,且当x???时,g?x????;当x???时,g?x????. ∴当a?1时,g?x??f??x??ex?x?a有两个零点x1,x2. 不妨设x1?x2,则x1?0?x2.
∴当函数f?x?有两个极值点时,a的取值范围为?1, ???. ???????5分
(Ⅱ)由(Ⅰ)知,x1,x2为g?x??0的两个实数根,x1?0?x2,g?x?在???, 0?上单调递减. 下面先证x1??x2?0,只需证g??x2??g?x1??0.
∵g?x2??ex?x2?a?0,得a?ex?x2,∴g??x2??e?x?x2?a?e222?x2?ex2?x22.
设h?x??e?x?ex?2x,x?0,
1 ???上单调递减, ?ex?2?0,∴h?x?在?0,xe∴h?x??h?0??0,∴h?x2??g??x2??0,∴x1??x2?0.
则h??x??? 0?上也单调递减,∴f?x1??f??x2?. ∵函数f?x?在?x1,2?2?0. ∴要证f?x1??f?x2??2,只需证f??x2??f?x2??2,即证ex?e?x?x2226
设函数k?x??ex?e?x?x2?2,x??0,???,则k??x??ex?e?x?2x. 设??x??k??x??ex?e?x?2x,则???x??ex?e?x?2?0, ∴??x?在?0,???上单调递增,∴??x????0??0,即k??x??0. ???上单调递增,∴k?x??k?0??0. ∴k?x?在?0,2∴当x??0,?2?0, ???时,ex?e?x?x2?2?0,则ex?e?x?x222∴f??x2??f?x2??2,∴f?x1??f?x2??2. ?????????12分
(22)(本小题满分10分)选修4-4:坐标系与参数方程
?2t?x??1??2(Ⅰ)由直线l的参数方程?得,其普通方程为y?x?2,
2?y?1?t??2∴直线l的极坐标方程为?sin???cos??2.
又∵圆C的方程为?x?2???y?1??5, 将??x??cos?代入并化简得??4cos??2sin?,
y??sin??22∴圆C的极坐标方程为??4cos??2sin?. ????????5分 (Ⅱ)将直线l:?sin???cos??2,
与圆C:??4cos??2sin?联立,得?4cos??2sin???sin??cos???2,
3cos整理得sin?cos??2?,∴???2,或tan??3.
不妨记点A对应的极角为
?,点B对应的极角为?,且tan?=3. 2310???sin??于是,cos?AOB?cos?????. ????????10分 210??
(23)(本小题满分10分)选修4-5:不等式选讲
(Ⅰ)f?x??x?1,即x?1?x?3?x?1.
x?1. (1)当x?1时,不等式可化为4?2x?x?1,又∵x?1,∴x??;
(2)当1?x?3时,不等式可化为2?x?1,x?1. 又∵1?x?3,∴1?x?3.
x?5. (3)当x?3时,不等式可化为2x?4?x?1,又∵x?3,∴3?x?5.
综上所得,1?x?3,或3?x?5,即1?x?5. ∴原不等式的解集为?1, 5?. ???????5分
(Ⅱ)由绝对值不等式性质得,x?1?x?3??1?x???x?3??2, ∴c?2,即a?b?2.
令a?1?m,b?1?n,则m?1,n?1,a?m?1,b?n?1,m?n?4,
?m?1??n?1?a2b21144????m?n???4???1, a?1b?1mnmnmn?m?n?2???2?原不等式得证. ???????10分
227