义务教育数学课程标准(2011年word版) - 图文(7)

2019-03-03 14:45

(1)借助现实情境了解代数式,进一步理解用字母表示数的意义(参见例50)。

(2)能分析简单问题中的数量关系,并用代数式表示。 (3)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。

4.整式与分式

(1)了解整数指数幂的意义和基本性质;会用科学记数法表示数(包括在计算器上表示)。

(2)理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算;能进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)。

(3)能推导乘法公式:(a+b)( a- b) = a2- b2; (a±b)2 = a 2±2ab + b

2

,了解公式的几何背景,并能利用公式进行简单计算(参见例51)。

(4)能用提公因式法、公式法(直接利用公式不超过二次)进行

因式分解(指数是正整数)。

(5)了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算。

(二)方程与不等式 1.方程与方程组

(1)能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型(参见例52)。

(2)经历估计方程解的过程(参见例53)。

31

(3)掌握等式的基本性质。

(4)能解一元一次方程、可化为一元一次方程的分式方程。 (5)掌握代入消元法和加减消元法,能解二元一次方程组。 (6)*1能解简单的三元一次方程组。

(7)理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。

(8)会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。

(9)了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题)。

(10)能根据具体问题的实际意义,检验方程的解是否合理。 2.不等式与不等式组

(1)结合具体问题,了解不等式的意义,探索不等式的基本性质(参见例54)。

(2)能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。

(3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。

(三)函数 1.函数

1

凡是打星号的内容是选学内容,不作考试要求。

32

(1)探索简单实例中的数量关系和变化规律,了解常量、变量的意义。

(2)结合实例,了解函数的概念和三种表示法,能举出函数的实例。

(3)能结合图像对简单实际问题中的函数关系进行分析(参见例55)。

(4)能确定简单实际问题中函数自变量的取值范围,并会求出函数值。

(5)能用适当的函数表示法刻画简单实际问题中变量之间的关系(参见例56)。

(6)结合对函数关系的分析,能对变量的变化情况进行初步讨论(参见例57)。

2.一次函数

(1)结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式(参见例58)。

(2)会利用待定系数法确定一次函数的表达式。

(3)能画出一次函数的图像,根据一次函数的图像和表达式 y = kx + b (k≠0)探索并理解k>0和k<0时,图像的变化情况。

(4)理解正比例函数。

(5)体会一次函数与二元一次方程的关系。 (6)能用一次函数解决简单实际问题。 3.反比例函数

33

(1)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。

(2)能画出反比例函数的图像,根据图像和表达式 y =(k≠0)探索并理解k>0和k<0时,图像的变化情况。

(3)能用反比例函数解决简单实际问题。 4.二次函数

(1)通过对实际问题的分析,体会二次函数的意义。

(2)会用描点法画出二次函数的图像,通过图像了解二次函数的性质。

(3)会用配方法将数字系数的二次函数的表达式化为

y?a(x?h)2?k的形式,并能由此得到二次函数图像的顶点坐标,说出

kx图像的开口方向,画出图像的对称轴,并能解决简单实际问题。

(4)会利用二次函数的图像求一元二次方程的近似解。 (5)*知道给定不共线三点的坐标可以确定一个二次函数。

二、图形与几何

(一)图形的性质2 1.点、线、面、角

(1)通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等(参见例59)。

(2)会比较线段的长短,理解线段的和、差,以及线段中点的意义。

2

考试中,只能用下文出现的基本事实和定理作为证明的依据。

34

(3)掌握基本事实:两点确定一条直线。 (4)掌握基本事实:两点之间线段最短。

(5)理解两点间距离的意义,能度量两点间的距离。 (6)理解角的概念,能比较角的大小。

(7)认识度、分、秒,会对度、分、秒进行简单的换算,并会计算角的和、差。

2.相交线与平行线

(1)理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质。

(2)理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。

(3)理解点到直线的距离的意义,能度量点到直线的距离。 (4)掌握基本事实:过一点有且只有一条直线与已知直线垂直。 (5)识别同位角、内错角、同旁内角。

(6)理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

(7)掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。

(8)掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。 *了解平行线性质定理的证明(参看例60)。

(9)能用三角尺和直尺过已知直线外一点画这条直线的平行线。

35


义务教育数学课程标准(2011年word版) - 图文(7).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:拼贴艺术:Photoshop实战合成全景照片

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: