哈尔滨理工大学学士学位论文
电缆故障点可用图1.2所示电路来等效。Rf代表绝缘电阻,G是击穿电压为Vg的击穿间隙,Cf代表局部分布电容,上述三个数值随不同的故障情况变化很大,并且互相之间并没有必然的联系。 图1.2 电缆故障等效电路 间隙击穿电压Vg的大小取决于放电通道的距离,电阻Rf的大小取决于电缆介质的损伤程度,而电容Cf的大小取决于故障点受潮的程度,数值很小,一般可以忽略。 根据故障电阻与击穿间隙情况,电缆故障可分为开路、低阻、高阻与闪络性故障,如表1.1所示。 表1.1 电缆故障性质的分类 故障性 Rf 间隙的击穿情况 质 开 路 ∞ 在直流或高压脉冲作用下击穿 低 阻 高 阻 闪 络 小于10Z0 Rf不是太低时,可用高压脉冲击穿 大于10Z0 高压脉冲击穿 ∞ 直流或高压脉冲击穿 说明:表中Z0为电缆的波阻抗值,电力电缆波阻抗一般在10-40Ω之间。 以上分类的目的也是为了选择测试方法的方便,根据目前流行的故障测距技术,开路与低阻故障可用低压脉冲反射法,高阻故障要用冲击闪络法,而闪络性故障可用直流闪络法测试。以上几种故障都可以用二次脉冲法测试,这是目前世界上最先进的故障测试技术,国外以德国、奥地利为代表,国内则以淄博信易杰电气公司为代表。现场人员有把Rf<100KΩ的故障称为低阻故障的习惯,主要是因为传统的电桥法可以测量这类故障。 据统计,高阻及闪络性故障约占整个电缆故障总数的90%。 现场上是通过试验方法区分高阻与闪络性故障的。 - 4 -
哈尔滨理工大学学士学位论文
图1.3给出了电缆耐压试验等效电路,其中Rs为试验设备内阻,E为设备所能提供的直流电压值,电阻Rf与临界击穿电压为Vg的间隙并联代表故障点。
图1.3 电缆耐压试验等效电路
由图1.3可知,在对电缆进行高压绝缘试验时,电缆故障点所能获得的电压为:
对闪络性故障来说Rf较大,故障间隙两端电压可以增加至很高,当试验电压升至某一值时,故障点击穿放电,电流突然升高,电压突然下降。预防性试验中发生的故障多属闪络性故障。高阻故障的故障点电阻Rf较小(但大于10Z0),导致故障点两端所加电压不能升至高于故障点击穿电压,也就不能使故障点击穿。因此,可以从在对电缆进行高压绝缘试验时有无故障点击穿现象判断电缆存在高阻还是闪络性故障。显然,高阻与闪络性故障的区分不是绝对的,它与高压试验设备的容量或试验设备的内阻等因素有关。
实际上还存在一种封闭性故障,它多发生于电缆接头或终端头内,特别是多发生在浸油的电缆头内。发生这类故障时,有时在某一试验电压下绝缘击穿,待绝缘恢复,击穿现象便完全消失,这类故障称为封闭性故障,因故障不能再现,寻找起来就比较困难。
1.3 电缆故障检测基础
电力电缆供电以其安全、可靠、有利于美化城市与厂矿布局等优点,获得了越来越广泛的应用。尤其是近几年来新开发区的建设、旧城的改造中,掀起了架空线入地的高潮。城市中电缆的用量迅速增加。
电力电缆(以下简称电缆)多埋于地下,一旦发生故障,寻找起来十分困难,往往要花费数小时,甚至几天的时间,不仅浪费了大量的人力、
- 5 -
哈尔滨理工大学学士学位论文
物力,而且会造成难以估量的停电损失。如何准确、迅速、经济地查寻电缆故障便成了供电部门日益关注的问题。
电缆故障情况及埋设环境比较复杂,变化多,测试人员应熟悉电缆的埋设走向与环境,确切地判断出电缆故障性质,选择合适的仪器与测量方法,按照一定的程序工作,才能顺利地测出电缆故障点。
电缆故障探测有其固有的特点,现场测试人员曾形象地说探测电缆故障点“七分靠仪器,三分靠人”,说明单纯地靠购买先进仪器是不能解决问题的。要重视操作人员的培训工作,生产单位和使用部门要经常交流信息、积累经验,加强电缆故障探测技术的研讨,以促进我国电缆故障探测技术整体水平的提高。
1.3.1 电缆故障性质诊断
即确定电缆故障属于高阻还是低阻故障;是
闪络还是封闭性故障;是接地、短路、断线故障,还 是上述综合故障;是单相、两相还是三相故障。通 常可以根据故障现象初步判断故障的性质。如运 行中的电缆发生故障,同时出现单相接地信号,则 有可能是单相接地故障;过流保护动作跳闸则可 能发生两相或三相短路,也可能接地故障,还可能 发生了短路和接地的混合故障,发生这些故障时, 短路电流或接地电流烧断电缆线芯就会形成断路 故障。对电缆故障做出初步判断后,通过测量电 缆绝缘电阻和进行电缆导通试验来进一步确定电 缆故障的性质。
! ! 一般方法是用兆欧表测量电缆线芯之间和线 芯对地的绝缘电阻,判断是否存在短路( 接地)故 障。如果测出的绝缘电阻良好,就要做导体的连 续性试验,如果测出的直流电阻远大于计算值,则 可以确定电缆导体存在断线故障。如果上述# 个 步骤都未发现异常,就应对电缆线路进行耐压试
验,判断电缆是否存在闪络故障[ 1.3.2 电缆故障测距
电缆故障测距,又叫粗测,在电缆的一端使用仪器确定故障距离,现场上常用的故障测距方法有古典电桥法与现代行波法
1.3.3 电缆故障定点
电缆故障定点,又叫精测,即按照故障测距结果,根据电缆的路径走向,找出故障点的大体方位来,在一个很小的范围内,利用放电声测法或
- 6 -
哈尔滨理工大学学士学位论文
其它方法确定故障点的准确位置。 。
1.3.4 电缆故障性质的诊断
- 7 -
哈尔滨理工大学学士学位论文
第2章 电力电缆故障测试方法-行波法 2.1 电缆故障测距方法
、根据不同性质的故障,电缆故障的测距采用不同的方法。目前主要有电桥法和根据行波原理发展的低压脉冲反射法、脉冲电压法、脉冲电流法、二次脉冲法。电桥法测试电缆受条件限制较多,对于高阻故障无法进行测试。随着新技术的不断进步,现在现场上电桥法用得越来越少。 2.1.1 二次脉冲法
20世纪90年代,国外发明二次脉冲法。它先用高压脉冲将故障点击穿,在故障点起弧后熄弧前,由测试仪器向电缆耦合注入一低压脉冲。此脉冲在故障点闪络处(电弧的电阻值很低)发生短路反射,并记忆在仪器中。电弧熄灭后,测量仪器复发一测量脉冲通过故障处直达电缆末端并发生开路反射,比较两次低压脉冲波形可非常容易地判断故障点(击穿点)位置。二次脉冲法使得电缆高阻故障的测试变得十分简单,是目前电力电缆故障
离线测试最先进的基础测试方法。
2.1.2 低压脉冲反射法
通过计量发射脉冲和故障点反射脉冲之间的时间差△t来测取故障距离。若设脉冲电波在电缆中的传播速度为v,则电缆故障距离S可由下式计算:S=0.5v△t。低压脉冲反射法适于测定电缆的低阻和开路故障,也可用于校对电缆的全长和显示电缆中间接头的位置,还可用于测定电缆的波传播速度,测量准确率较高,应用较广。 2.1.3 低压脉冲反射法工作原理
低压脉冲法适用于测试电缆线路断线故障和小于l OO 欧的低电阻短路(接地)故障。其基本原理是,在测试端向电缆线路注入一低压脉冲,仪器记录发射脉冲波和至故障点返回的反射脉冲波的时间间距△t。已知脉冲波在电缆中传播速度,即可计算出故障点距离。 2.1.4 脉冲电流法
脉冲电流法是20世纪80年代初发展起来的一种测试方法,以安全、可靠、接线简单等优点显示了强大的生命力。它与脉冲电压法大致相同,区别只在于:脉冲电流法是通过一线性电流藕合器来测量电缆故障击穿时产生的电流脉冲信号。脉冲电流法也包括直闪法和冲闪法两种类型。直闪法用于测量闪络性高阻故障;而冲闪法主要用于测量泄漏性高阻故障,也可测量闪络性高阻故障。直闪法测量线路中包括:电流耦合器、调压器、高压试验变压器、整流硅堆、储能电容。测量时,调整仪器从0开始给电缆加直流电压,当电压升到一定值时,故障点闪络放电,线性电流耦合器输出第一个电流脉冲。放电脉冲到达故障点后又被反射,折回到仪器端。这一过程不断进行,直到放电过程结束,则故障点到测量端的距离可由此计算出来。冲闪法测量线路中则有一球间隙,用以改变加到电缆上的冲击
- 8 -