华师版七年级下册数学知识点总结

2019-03-09 18:14

七年级数学下期期末复习提纲 第六章 一元一次方程

一、基本概念 (一)方程的变形法则

法则1:方程两边都 或 同一个数或同一个 ,方程的解不变。

例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。

在方程6x=-2x-6左右两边都加上4x,得到新方程:8x=-6。

移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意

移项要变号。

例如:(1)将方程x-5=7移项得:x=7+5 即 x=12

(2)将方程4x=3x-4移项得:4x-3x=-4即 x=-4

法则2:方程两边都除以或 同一个 的数,方程的解不变。

例如: (1)将方程-5x=2两边都除以-5得:x=-

2 52231

(2)将方程 x= 两边都乘以得:x=

2339这里的变形通常称为“将未知数的系数化为1”。 注意:

(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。 (2)不论上一乘以或除以数时,都要注意结果的符号。

方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。 求不方程的解的过程,叫做解方程。 (二)一元一次方程的概念及其解法

1.定义:只含有一个未知数,并且含有未知数的式子都是 ,未知数的次数是 ,这样的方程叫做一元一次方程。

例如:方程7-3x=4、6x=-2x-6都是一元一次方程。

12

而这些方程5x-3x+1=0、2x+y=l-3y、 =5就不是一元一次方程。

x-1

1

2.一元一次方程的一般式为:ax+b=0(其中a、b为常数,且a≠0)

一元一次方程的一般式为:ax=b(其中a、b为常数,且a≠0) 3.解一元一次方程的一般步骤

步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。

注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

(2)“去分母”指去掉方程两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号。去分母时,不要忘记不等式两边的每一项都乘以最小公倍数(即公分母) (三)一元一次方程的应用

1.纯数学上的应用:(1)一元一次方程定义的应用;(2)方程解的概念的应用;(3)代数中的应用;(4)公式变形等。

2.实际生活上的应用:(1)调配问题;(2)行程问题;(3)工程问题;(4)利息问题;(5)面积问题等。

3.探索性应用:这类问题与上面的几类问题有联系,但也有区别,有时是一种没有结论的问题,需要你给出结论并解答。

第七章 二元一次方程组

一、基本概念

(一)二元一次方程组的有关概念

1.二元一次方程的定义:都含有 个未知数,并且 的次数都是1,像这样的整式方程,叫做二元一次方程。

一般形式为:ax+by=c(a、b、c为常数,且a、b均不为0)

结合一元一次方程,二元一次方程对“元”和“次”作进一步的理解;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。

例如:方程7y-3x=4、-3a+3=4-7b、2m+3n=0、1-s+t=2s等都是二元一次方程。

而6x=-2y-6、4x+8y=-6z、

2

2=n等都不是二元一次方程。 m2.二元一次方程组的定义:把两个二元一次方程合在一起,就组成了一个二元一次方程组。 例如:??2x?3y?5?7a?3b??3?m?n?2?s?t?2、?、?、?等都是二元一次方程组。

?m?n?1?3s?t??11?x?y??8?a?2b?1

2

1?2x?3y?5?7a?3a??3???n?2而?、?、?m等都不是二元一次方程组。 ?x?z??8?a?2a?1??m?n?1注意:(1)只要两个方程一共含有两个未知数,也是二元一次方程组。如:?也是二元一次方程组。

3.二元一次方程和二元一次方程组的解

(1)二元一次方程的解:能够使二元一次方程的左右两边都相等的两个未知数的值,叫做二元一次方程的解。

(2)二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。(即是两个方程的公共解)

注意:写二元一次方程或二元一次方程组的解时要用“联立”符号“?”把方程中两个未知数

?2x?5?s?2、??y??8?t??11??的值连接起来写。

二元方程解的写法的标准形式是:?(二)二元一次方程组的解法

1.解二元一次方程组的基本思想:“消元”,化二元一次方程组为一元一次方程来解。 2.二元一次方程组的基本解法 (1)代入消元法(代入法)

定义:通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的这种解法叫做代人消元法,简称代入法。

步骤:①选取一个方程,将它写成用一个未知数表示另一个未知数,记作方程③。 ②把③代人另一个方程,得一元一次方程。 ③解这个一元一次方程,得一个未知数的值。

④把这个未知数的值代人③,求出另一个未知数值,从而得到方程组的解。 (2)加减消元法(加减法)

定义:通过将两个方程相加(或相减),消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫加减消元法,简称加减法。

步骤:①把两个方程同一个未知数的系数乘以适当的倍数,使得这两个未知数的绝对值相同。

?x?a,(其中a、b为常数)

?y?b3

②把未知数的绝对值相同的两个方程相加或相减,得一元一次方程。 ③解这个一元一次方程,得一个未知数的值。

④把这个未知数的值代人原方程组中系数叫简单的一个方程,求出另一个未知数值,从而得到方程组的解。

注意:正确选用两种基本解二元一次方程组

(1)若二元一次方程组中有一个未知数系数的绝对值为1,适宜用“代入法”。

(2)用加减法解二元一次方程组,两方程中若有一个未知数系数的绝对值相等,可直接加减消元;若同一未知数的系数绝对值不等,则应选一个或两个方程变形,使一个未知数的系数的绝对值相等,然后再直接用加减法求解;若方程组比较复杂,应先化简整理。 (三)二元一次方程组的应用

1.纯数学上的应用:(1)二元一次方程定义的应用;(2)方程解的概念的应用;(3)代数中的应用;(4)公式变形等。

2.实际生活上的应用:(1)调配问题;(2)行程问题;(3)工程问题;(4)利息问题;(5)面积问题等。

3.探索性应用:这类问题与上面的几类问题有联系,但也有区别,有时是一种没有结论的问题,需要你给出结论并解答。 注意事项:

(1)在实际问题中,常会遇到有多个未知量的问题,和一元一次方程一样,二元一次方程组也是反映现实世界数量之间相等关系的数学模型之一,要学会将实际问题转化为二元一次方程组,从而解决一些简单的实际问题。

(2)二元一次方程组的解法很多,但它的基本思想都是通过消元,转化为一元一次方程来解的,最常见的消元方法有代人法和加减法。一个方程组用什么方程来逐步消元,转化应根据它的特点灵活选定。

(3)通过列方程组来解某些实际问题,应注意检验和正确作答,检验不仅要检查求得的解是否适合方程组的每一个方程,更重要的是要考察所得的解答是否符合实际问题的要求。

第8章 一元一次不等式

一、基本概念

(一)不等式的有关概念和性质

4

1.不等式的定义:用 表示不等关系的式子叫做不等式。

常见不等号:>、<、≥、≤、≠。

注:“>”、“<”不仅表示左右两边不等关系,还明确表示左右两边的大小;“≤”、“≥”也表示不等,前者表示“不大于”(小于或等于),后者表示“不小于”(大于或等于), “≠”表示左右两边不相等

例如:方程7y-3x>4、-3a+3≤4-7a、2m+3n≠0等都是不等式。

而-2y-6、4x+8y=-6z等都不是不等式。

2.不等式解的定义:能使不等式成立的未知数的值,叫做不等式的解。

例如:不等式120<5x中x=25,26,27,?等都是120<5x的解,而x=24,23,22,21则都不是不等式的解。 3.不等式的解集

(1)定义:一个不等式的所有解,组成这个不等式解的集合,简称为这个不等式的解集。 (2)求不等式的解集的过程,叫做解不等式。 (3)在数轴上表示不等式的解集:

没有等号画空心圆圈,有等号画实心圆点。“大于”向右画,“小于”向左画。 4.不等式的基本性质

不等式的基本性1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向 。 即:如果a>b,那么a+c>b+c,a-c>b-c; 如果a<b,那么a+c<b+c,a-c<b-c.

不等式的基本性2:不等式的两边都乘以(或除以)同一个 ,不等号的方向不变。 即:如果a<b,c>0,那么ac<bc,a/c<b/c

不等式的基本性3:不等式的两边都乘以(或除以)同一个负数,不等号的 。 即:如果a>b,c<0,那么ac<bc,a/c<b/c (二)解一元一次不等式

1.一元一次不等式的定义:只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,像这样的不等式叫做一元一次不等式。

例如:方程7-3x>4、6x≤-2x-6、3x≠-2x+150都是一元一次不等式。 12

而这些方程5x-3x+1≥0、2x+y<l-3y、 ≠5就不是一元一次不等式。

x-12.一元一次不等式的解法

5


华师版七年级下册数学知识点总结.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:统一战线理论与政策(讲课稿)

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: