∵m?(1,2),∴?2(m?1)2?17?(?2?2,1),∴b?(??,?2?2)?(2,??).
48
pp18.(12分)[解析]:(I)当y?时,x?
28p2 又抛物线y?2px的准线方程为x??
2 由抛物线定义得,所求距离为p?(?p)?5p
y P O x 828 (2)设直线PA的斜率为kPA,直线PB的斜率为kPB 由
A B 2p(x1?x0)
y1?y0y1?2px1,y0?2px0
?y0)(y1?y0)?2p(x1?x0),故kPA?y1?y0?x1?x022 相减得(y12p(x2?x0),由PA,PB倾斜角互补知kPA??kPB
y2?y02p2p,所以y?y??2y, 故y1?y2 即????2 120y1?y0y2?y0y0 同理可得kPB? 设直线AB的斜率为kAB,由y2?2px2,y122?2px1,相减得(y2?y1)(y2?y1)?2p(x2?x1)
所以k
AB?y2?y12p?(x1?x2), 将y1?y2??2y0(y0?0)代入得
x2?x1y1?y2kAB?2pp??,所以kAB是非零常数.
y1?y2y0
19.(14分)[解析]:设B(-1,b),lOA:y=0, lOB:y=-bx,设C(x,y),则有0?x
知点C到OA,OB距离相等,?y?得,得y(1?a)x?2ax?(1?a)y2y?bx1?b22①及C在直线AB: y??b?x?a?②上,由①②及x?a1?a2?2ax?(1?a)y2?0.
20.(14分)[解析]:(1)设P(x0,y0)(x0>0,y0>0),又有点A(-a,0),B(a,0). ?S?ACD?S?PCD,
22x0?ay0,得(x0?a)?y0?4, ,).将C点坐标代入椭圆方程22a2b2222(x0?a)2x0x0y0?2?5,?x0?2a(x0??a舍去),?y0?3b,?P(2a,3b). 又??1 ?a2aa2b2?2??0 若y=0,则b=0 满足(1?a)x?C为AP的中点,?C((2)?KPD?KPB?3b22x2y2y03b直线PD:代入y?(x?a)?2?1?2x?3ax?a?0 ?,2ax0?aaaba(xD?a舍去),?C(x0?a,y0),即C(a,3b)∴CD垂直于x轴.若CD过椭圆C1的右焦点,2222222则a?a2?b2,?b?3a,?e?a?b?7.故可使CD过椭圆C1的右焦点,此时C2的离心率为7.22a22?xD?
6