2011年黄冈市初中毕业生升学考试说明(3)

2019-03-10 22:58

(2)了解垂线、垂线段等概念,会用三角尺或量角器过一点画一条直线的垂线。了解垂线段最短的性质,理解点到直线距离的意义。 (3)知道过一点有且仅有一条直线垂直于已知直线。 (4)掌握线段垂直平分线性质定理及逆定理。 (5)了解平行线的概念及平行线基本性质。 (6)掌握两直线平行的判定及性质。 (7)会用三角尺和直尺过已知直线外一点画这条直线的平行线。 (8)体会两条平行线之间距离的意义,会度量两条平行线之间的距离。 ⒊三角形 考试内容: 三角形,三角形的角平分线、中线和高,三角形中位线,全等三角形、全等三角形的判定,等腰三角形的性质及判定。等边三角形的性质及判定。直角三角形的性质及判定。勾股定理。勾股定理的逆定理。 考试要求: (1)了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高。 (2)掌握三角形中位线定理。 (3)了解全等三角形的概念,掌握两个三角形全等的判定定理。 (4)了解等腰三角形、直角三角形、等边三角形的有关概念,掌握等腰三角形、直角三角形、等边三角形的性质和判定定理。 (5)掌握勾股定理,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。 ⒋四边形 考试内容: 多边形,多边形的内角和与外角和,正多边形,平行四边形、矩形、菱形、正方形、梯形的概念和性质,平面图形的镶嵌。 考试要求: (1)了解多边形的内角和与外角和公式,了解正多边形的概念。 (2)掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。 (3)掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和判定定理。 (4)了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心)。 (5)通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。 ⒌圆 考试内容: 圆,弧、弦、圆心角的关系,点与圆、直线与圆以及圆与圆的位置关系,圆周角与圆心角的关系,三角形的内心和外心,切线的性质和判定,弧长,扇形的面积,圆锥的侧面积、全面积。 考试要求: (1)理解圆及其有关概念,了解弧、弦、圆心角的关系,了解点与圆、直线与圆以及圆与圆的位置关系。 (2)了解圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征。 (3)了解三角形的内心和外心。 (4)了解切线的概念、切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。 (5)会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。 ⒍尺规作图 考试内容: 基本作图,利用基本作图作三角形,过一点、两点和不在同一直线上的三点作圆。 考试要求: (1)能完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线。 (2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。 (3)能过一点、两点和不在同一直线上的三点作圆。 (4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明)。 ⒎视图与投影 考试内容: 简单几何体的三视图,直棱柱、圆锥的侧面展开图,视点、视角,盲区,投影。 考试要求: (1)会画简单几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图)的示意图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。 (2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型 (3)了解基本几何体与其三视图、展开图(球除外)之间的关系;知道这种关系在现实生活中的应用(如物体的包装)。 (4)了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。 (5)知道物体阴影的形成,并能根据光线的方向辨认实物的阴影(如在阳光或灯光下,观察手的阴影或人的身影)。 (6)了解视点、视角及盲区的含义,能在简单的平面图和立体图中表示。 (7)了解中心投影和平行投影。 (二)图形与变换 ⒈图形的轴对称、图形的平移、图形的旋转 考试内容: 轴对称、平移、旋转。 考试要求: (1)通过具体实例认识轴对称(或平移、旋转),探索它们的基本性质; (2)能够按要求作出简单平面图形经过轴对称(或平移、旋转)后的图形,能作出简单平面图形经过一次或两次轴对称后的图形; (3)探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称(或平移、旋转)的性质及其相关性质。 (4)利用轴对称(或平移、旋转)及其组合进行图案设计;认识和欣赏轴对称(或平移、旋转)在现实生活中的应用。 ⒉图形的相似 考试内容: 比例的基本性质,线段的比,成比例线段,图形的相似及性质,三角形相似的条件,图形的位似,锐角三角函数,30° 、45 °、60° 角的三角函数值。 考试要求: (1)了解比例的基本性质,了解线段的比、成比例线段,通过实例了解黄金分割。 (2)通过实例认识图形的相似,了解相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。 (3)了解两个三角形相似的概念,掌握两个三角形相似的条件。 (4)了解图形的位似,能够利用位似将一个图形放大或缩小。 (5)通过实例了解物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度)。 (6)通过实例认识锐角三角函数(sinA,cosA, tanA),知道30° 、45° 、60° 角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角. (7)运用三角函数解决与直角三角形有关的简单实际问题。 (三)图形与坐标 考试内容: 平面直角坐标系。 考试要求: (1)认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标。 (2)能在方格纸上建立适当的直角坐标系,描述物体的位置。 (3)在同一直角坐标系中,感受图形变换后点的坐标的变化。 (4)灵活运用不同的方式确定物体的位置。 (四)图形与证明 ⒈了解证明的含义 考试内容: 定义、命题、逆命题、定理,定理的证明,反证法。 考试要求: (1)理解证明的必要性。 (2)通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设)和结论。 (3)结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立。 (4)理解反例的作用,知道利用反例可以证明一个命题是错误的。 (5)通过实例,体会反证法的含义。 (6)掌握用综合法证明的格式,体会证明的过程要步步有据。 ⒉掌握证明的依据 考试内容: 一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,若同位角相等,那么这两条直线平行; 若两个三角形的两边及其夹角分别相等,则这两个三角形全等;两个三角形的两角及其夹边分别相等,则这两个三角形全等;两个三角形的三边分别相等,则这两个三角形全等;全等三角形的对应边、对应角分别相等。 考试要求: 运用以上6条“基本事实”作为证明命题的依据。 ⒊利用2中的基本事实证明下列定理 考试内容: (1)平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行)。 (2)三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角)。 (3)直角三角形全等的判定定理。 (4)角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心). (5)垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交干一点(外心)。 (6)三角形中位线定理。 (7)等腰三角形、等边三角形、直角三角形的性质和判定定理。 (8)平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理。 考试要求: (1)会利用2中的基本事实证明上述命题。 (2)会利用上述定理证明新的命题。 (3)练习和考试中与证明有关的题目难度,应与上述所列的命题的论证难度相当。 ⒋通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值。 统 计 与 概 率 ⒈统计 考试内容: 数据,数据的收集、整理、描述和分析.抽样,总体,个体,样本。 扇形统计图。 加权平均数,数据的集中程度与离散程度,极差和方差。 频数、频率,频数分布,频数分布表、直方图、折线图。 样本估计总体,样本的平均数、方差,总体的平均数、方差。 统计与决策,数据信息,统计在社会生活及科学领域中的应用。 考试要求: (1)会收集、整理、描述和分析数据,能用计算器处理较为复杂的统计数据。 (2)了解抽样的必要性,能指出总体、个体、样本。知道不同的抽样可能得到不同的结果。 (3)会用扇形统计图表示数据。 (4)理解并会计算加权平均数,能根据具体问题,选择合适的统计量表示数据的集中程度。 (5)会探索如何表示一组数据的离散程度,会计算极差与方差,并会用它们表示数据的离散程度。 (6)理解频数、频率的概念,了解频数分布的意义和作用。会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题。 (7)体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差。 (8)能根据统计结果做出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流。 (9)能根据问题查找相关资料,获得数据信息,会对日常生活中的某些数据发表自己的看法。 (10)能应用统计知识解决在社会生活及科学领域中一些简单的实际问题。 ⒉概率 考试内容: 事件、事件的概率,列举法(包括列表、画树状图)计算简单事件的概率。实验与事件发生的频率、大量重复实验与事件发生概率的估计。运用概率知识解决实际问题。 考试要求: (1)在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。 (2)通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值。 (3)会通过实验获得事件发生的概率,并能运用概率知识解决一些实际问题。 课 题 学 习 考试内容: 课题的提出、数学模型、问题解决。数学知识的应用、研究问题的方法。 考试要求: (1)结合实际,会提出、探讨一些具有挑战性的研究课题,经历“问题情境—建立模型—求解—解释与应用”的基本过程。进而体验从实际问题抽象出数学问题、建立数学模型,综合应用已有的知识解决问题的过程。加深理解相关的数学知识,发展思维能力。 (2)体验数学知识之间的内在联系、初步形成对数学整体性的认识。 (3)理解数学知识在实际问题中的应用,初步掌握一些研究问题的方法与经验。 Ⅱ.考试形式及试卷结构 一、考试方式:闭卷、笔试,全卷满分120分,考试时间120分钟。 二、试卷结构 1.试卷区分度 试题按其难度分为容易题、中档题和稍难题。难度值为0.70以上的试题为容易题,难度值为0.55~0.70之间的试题为中档题,难度值为0.30~0.55之间的试题为稍难题。试卷的总体难度约为0.65。 2.试卷题型结构 试卷包含有填空题、选择题和解答题三种题型。三种题型的占分比例约为:填空题占25%,选择题占20%,解答题占55%。填空题只要求直接填写结果,不必写出计算过程或推证过程;选择题是四选一型的单项选择题;解答题包括计算题、证明题、应用题、作图题等,解答题应写出文字说明、演算步骤、推证过程或按题目要求正确作图。应设计结合现实情境的开放性、探索性问题,杜绝人为编造的繁难计算题和证明题。 全卷总题量(含小题)控制在25~28题,较为适宜。


2011年黄冈市初中毕业生升学考试说明(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:乌坎事件案例分析

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: