基于PCA的人脸识别系统研究毕业设计论文(2)

2019-03-22 13:10

毕业论文 人脸识别系统的研究与实现

视频输入跟踪人脸检测和面部特征定位人脸识别 身份信息 表情分析 性别判断 情感状态 性别信息 究开始于1966年PRI的Bledsoe的工作,经过三十多年的发展,人脸识别技术取得了长足的进步, 现在就目前国内外的发展情况来进行展述。

研制的人像识别机,可在1秒钟内中从3500人中识别到你要找的人。1993年,美国国防部高级研究项目署 (Advanced Research Projects Agency)和美国陆军研究实验室(Army Research Laboratory)成立了Feret(Face Recognition Technology) 项目组,建立了feret 人脸数据库,用于评价人脸识别算法的性能。

美国陆军实验室也是利用vc++开发,通过软件实现的,并且FAR为49%。在美国的进行的公开测试中,FAR,为53%。美国国防部高级研究项目署,利用半自动和全自动算法。这种算法需要人工或自动指出图像中人的两眼的中心坐标,然后进行识别。在机场开展的测试中,系统发出的错误警报太多,国外的一些高校(卡内基梅隆大学(Carnegie Mellon University)为首,麻省理工大学(Massachusetts Institute of Technology )等,英国的雷丁大学(University of Reading))和公司(Visionics 公司Facelt 人脸识别系统、Viiage 的FaceFINDER 身份验证系统、Lau Tech 公司Hunter系统、德国的BioID 系统等)的工程研究工作也主要放在公安、刑事方面,在考试验证系统的实现方面深入研究并不多。

6

图1-1面部感知系统结构图

第二节 人脸识别的国内外发展概况

现在人脸识别技术已经应用在许多领域中,并起到了举足轻重的作用,人脸识别研

种族判断 种族信息 年龄判别 唇 读 年龄信息 唇形类别

一 国外的发展概况[1]

见诸文献的机器自动人脸识别研究开始于1966年PRI的Bledsoe的工作,1990年日本

毕业论文 人脸识别系统的研究与实现

二 国内的发展概况

人脸识别系统现在在大多数领域中起到举足轻重的作用,尤其是用在机关单位的安全和考勤、网络安全、银行、海关边检、物业管理、军队安全、智能身份证、智能门禁、司机驾照验证、计算机登录系统。我国在这方面也取得了较好的成就,国家863项目“面像检测与识别核心技术”通过成果鉴定并初步应用,就标志着我国在人脸识别这一当今热点科研领域掌握了一定的核心技术。北京科瑞奇技术开发股份有限公司在2002年开发了一种人脸鉴别系统,对人脸图像进行处理,消除了照相机的影响,再对图像进行特征提取和识别。这对于人脸鉴别特别有价值,因为人脸鉴别通常使用正面照,要鉴别的人脸图像是不同时期拍摄的,使用的照相机不一样。系统可以接受时间间隔较长的照片,并能达到较高的识别率,在计算机中库藏2300人的正面照片,每人一张照片,使用相距1--7年、差别比较大的照片去查询,首选率可以达到50%,前20张输出照片中包含有与输入照片为同一人的照片的概率可达70% 。 2005年1月18日,由清华大学电子系人脸识别课题组负责人苏光大教授主持承担的国家\十五\攻关项目《人脸识别系统》通过了由公安部主持的专家鉴定。鉴定委员会认为,该项技术处于国内领先水平和国际先进水平。

本论文主要对该人脸识别系统进行模块划分,并介绍各模块的功能,重点介绍图像预处理模块,对其内的子模块的功能和算法进行详细讲述,主要介绍光线补偿、图像灰度化、高斯平滑、均衡直方图、图像对比度增强,图像预处理模块在整个系统中起着极其关键的作用,图像处理的好坏直接影响着后面的定位和识别工作。

[2]

7

毕业论文 人脸识别系统的研究与实现

第二章 系统的需求分析与方案选择

人脸识别系统现在应用于许多领域中,但是人脸识别技术也是一项近年来兴起的,且不大为人所知的新技术。在我国以及其他国家都有大量的学者正在研究之中,不断的更新人脸识别技术,以便系统的识别准确率达到新的高度。

第一节 可行性分析

在开发该人脸识别软件之前,我们查询了前人所写过的诸多论文以及源程序,在开发之时,结合了资料中的算法并揉进了自己的一些思想,使程序可以对人脸图片进行简易识别。

一 技术可行性

图像的处理方法很多,我们可以根据需要,有选择地使用各种方法。

在确定脸部区域上,通常使用的方法有肤色提取。肤色提取,则对脸部区域的获取则比较准确,成功率达到95%以上,并且速度快,减少很多工作。

图像的亮度变化,由于图像的亮度在不同环境的当中,必然受到不同光线的影响,图像就变得太暗或太亮,我们就要对它的亮度进行调整,主要采取的措施是对图像进行光线补偿。

高斯平滑:在图像的采集过程中,由于各种因素的影响,图像中往往会出现一些不规则的随机噪声,如数据在传输、存储时发生的数据丢失和损坏等,这些都会影响图像的质量,因此需要将图片进行平滑操作以此来消除噪声。

灰度变换:进行灰度处理,我们要保证图像信息尽可能少的丢失。同样在进行灰度变换前,我们也要对图像的信息进行统计,找出一个比较合理的灰度值,才能进行灰度变换。

灰度均衡:灰度变换后,就要进行灰度均衡,可以根据灰度分布来进行灰度均衡。 对比度增强:将所要处理的区域和周围图像区域进一步拉开他们的对比度,使它们更加明显,主要通过像素的聚集来实现。

8

毕业论文 人脸识别系统的研究与实现

二 操作可行性

该人脸识别软件需要如下的运行环境:CPU:500M及以上;内存:64 M及以上。安装有Windows 98、Windows Me、Windows 2000、Windows NT等操作系统中的其中一种。另还装有摄像头可进行随机拍照和识别。因此,从操作可行性来看,只要系统用户的硬件软件设备满足以上条件,即可用该人脸识别软件进行人脸的识别。

第二节 需求分析

一 应用程序的功能需求分析

该软件最主要的功能就是要能识别出人脸,首先该系统需要对通过摄像头拍照而获取到的原始的人脸图片进行一系列处理才可进行下一步的工作,该处理过程也称图像预处理。预处理这个模块在整个人脸识别系统的开发过程中占有很重要的地位,只有预处理模块做的好,才可能很好的完成后面的人脸定位和特征提取这两大关键模块。因此本设计中所要完成的主要功能如下所述:

图像获取功能:

该模块主要是从摄像头拍照后进行获取图片,也可以从图片库中获取,获取后的图片可以在软件的界面中显示出来以便进行识别。

图像预处理功能:

该模块主要包括图像光线补偿、图像变成灰色、高斯平滑、均衡直方图、实现图像对比度增强、二值化变换等。

人脸定位功能:

该模块主要是将处理后的人脸图片进行定位,将眼睛、鼻子、嘴巴标记出来,以便进行特征提取。

特征提取功能:

该模块是在定位后的人脸图片中将眼睛、鼻子、嘴巴的特征值提取出来。 识别功能:

该模块是将从图片中提取的特征值和后台数据库中的值进行比较来完成识别功能。

9

毕业论文 人脸识别系统的研究与实现

二 开发环境需求分析

1、硬件环境

(1)硬件配置原则

具有可靠性,可用性和安全性,具有完善的技术支持。能够满足个人学习和设计需要。

(2)运行本软件所需的硬件资源

CPU: 800M及以上;内存: 128M及以上 2、软件环境

(1)系统软件配置原则

能够满足该软件的可靠性,可用性和安全性的要求 (2)系统软件配置方案

① 配置有持续工作能力、高稳定性、高度可集成的开放式标准的操作系统,如Windows2000,Windows NT,UNIX,Linux等。

② 配备符合ANSI/ISO标准的高级程序设计语言处理软件。如:Visual C++ 6.0。 ③ 熟悉C++高级程序设计语言。

3、 运行环境需求分析

(1)、硬件环境

CPU:500M及以上;内存:64 M及以上。 (2)、软件环境

可以运行在微软公司近年来所出的各种操作系统。如Windows 98、Windows Me、Windows 2000、Windows NT等。

10


基于PCA的人脸识别系统研究毕业设计论文(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:项目实训-学生信息管理系统

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: