ÖйúÊýѧ½¨Ä£-±à³Ì½»Á÷-̰À·Ëã·¨ - 1(4)

2019-04-02 16:19

'Öеļ¯ºÏÊýÄ¿¼´Îª¸²¸ÇµÄ´óС¡£µ±ÇÒ½öµ±Ã»ÓÐÄܸ²¸ÇUµÄ¸üСµÄ¼¯ºÏʱ£¬³ÆS'

Ϊ×îС¸²¸Ç¡£¿ÉÒÔ½«¼¯ºÏ¸²¸ÇÎÊÌâת»¯Îª¶þ·Ö¸²¸ÇÎÊÌ⣨·´Ö®ÒàÈ»£©£¬¼´ÓÃAµÄ¶¥µãÀ´±íʾS1 , ., Sk

£¬BÖеĶ¥µã´ú±íUÖеÄÔªËØ¡£µ±ÇÒ½öµ±SµÄÏàÓ¦¼¯ºÏÖаüº¬UÖеĶÔÓ¦ÔªËØÊ±£¬ÔÚAÓëBµÄ¶¥µãÖ®¼ä´æÔÚÒ»Ìõ±ß¡£

Àý1 - 11 ÁîS= {S1£¬. . .£¬S5 }, U= { 4£¬5£¬. . .£¬15}, S1 = { 4£¬6£¬7£¬8£¬9£¬1

3 }£¬S2 = { 4£¬5£¬6£¬8 }£¬S3 = { 8£¬1 0£¬1 2£¬1 4£¬1 5 }£¬S4 = { 5£¬6£¬8£¬1 2£¬1

4£¬1 5 }£¬S5 = { 4£¬9£¬1 0£¬11 }¡£S ' = {S1£¬S4£¬S5 }ÊÇÒ»¸ö´óСΪ3µÄ¸²¸Ç£¬Ã»ÓиüСµÄ¸²¸Ç£¬

S' ¼´Îª×îС¸²¸Ç¡£Õâ¸ö¼¯ºÏ¸²¸ÇÎÊÌâ¿ÉÓ³ÉäΪͼ1-6µÄ¶þ·Öͼ£¬¼´Óö¥µã1£¬2£¬3£¬1 6ºÍ1 7·Ö±ð±íʾ¼¯ºÏS1£¬S2£¬S3£¬S4

ºÍS5£¬¶¥µãj ±íʾ¼¯ºÏÖеÄÔªËØj£¬4¡Üj¡Ü1 5¡£ ¼¯ºÏ¸²¸ÇÎÊÌâΪN P-¸´ÔÓÎÊÌâ¡£ÓÉÓÚ¼¯ºÏ¸²¸ÇÓë¶þ·Ö¸²¸ÇÊÇͬһÀàÎÊÌ⣬¶þ·Ö¸²¸ÇÎÊÌâÒ²ÊÇN

P-¸´ÔÓÎÊÌâ¡£Òò´Ë¿ÉÄÜÎÞ·¨ÕÒµ½Ò»¸ö¿ìËÙµÄËã·¨À´½â¾öËü£¬µ«ÊÇ¿ÉÒÔÀûÓÃ̰À·Ë㷨ѰÕÒÒ»ÖÖ¿ìËÙÆô·¢Ê½·½·¨¡£Ò»ÖÖ¿ÉÄÜÊÇ·Ö²½½¨Á¢¸²¸ÇA'

£¬Ã¿Ò»²½Ñ¡ÔñAÖеÄÒ»¸ö¶¥µã¼ÓÈ븲¸Ç¡£¶¥µãµÄÑ¡ÔñÀûÓÃ̰À·×¼Ôò£º´ÓAÖÐѡȡÄܸ²¸ÇBÖл¹Î´±»¸²¸ÇµÄÔªËØÊýÄ¿×î¶àµÄ¶¥µã¡£

Àý1-12 ¿¼²ìͼ1 - 6ËùʾµÄ¶þ·Öͼ£¬³õʼ»¯A' = ÇÒBÖÐûÓж¥µã±»¸²¸Ç£¬¶¥µã1ºÍ1

6¾ùÄܸ²¸ÇBÖеÄÁù¸ö¶¥µã£¬¶¥µã3¸²¸ÇÎå¸ö£¬¶¥µã2ºÍ1 7·Ö±ð¸²¸ÇËĸö¡£Òò´Ë£¬ÔÚµÚÒ»²½ÍùA' ÖмÓÈë¶¥µã1»ò1 6£¬Èô¼ÓÈë¶¥µã1

6£¬ÔòËü¸²¸ÇµÄ¶¥µãΪ{ 5 , 6 , 8 , 1 2 , 1 4 , 1 5 }£¬Î´¸²¸ÇµÄ¶¥µãΪ{ 4 , 7 , 9 , 1 0

, 11 , 1 3 }¡£¶¥µã1Äܸ²¸ÇÆäÖÐËĸö¶¥µã£¨ { 4 , 7 , 9 , 1 3 }£©£¬¶¥µã2 ¸²¸ÇÒ»¸ö( { 4 }

)£¬¶¥µã3¸²¸ÇÒ»¸ö£¨{ 1 0 }£©£¬¶¥µã1 6¸²¸ÇÁã¸ö£¬¶¥µã1 7¸²¸ÇËĸö{ 4 , 9 , 1 0 , 11

}¡£ÏÂÒ»²½¿ÉÑ¡Ôñ1»ò1 7¼ÓÈëA' ¡£ÈôÑ¡Ôñ¶¥µã1£¬Ôò¶¥µã{ 1 0 , 11} ÈÔȻδ±»¸²¸Ç£¬´Ëʱ¶¥µã1£¬2£¬1

6²»¸²¸ÇÆäÖÐÈÎÒâÒ»¸ö£¬¶¥µã3¸²¸ÇÒ»¸ö£¬¶¥µã1 7¸²¸ÇÁ½¸ö£¬Òò´ËÑ¡Ôñ¶¥µã1 7£¬ÖÁ´ËËùÓж¥µãÒѱ»¸²¸Ç£¬µÃA' = { 1 6 , 1 , 1 7 }¡£

ͼ1 - 7¸ø³öÁḚ̈À·¸²¸ÇÆô·¢Ê½·½·¨µÄα´úÂ룬¿ÉÒÔÖ¤Ã÷£º 1) µ±ÇÒ½öµ±³õʼµÄ¶þ·ÖͼûÓи²¸Çʱ£¬Ëã·¨ÕÒ²»µ½¸²¸Ç£»2)

Æô·¢Ê½·½·¨¿ÉÄÜÕÒ²»µ½¶þ·ÖͼµÄ×îС¸²¸Ç¡£

1. Êý¾Ý½á¹¹µÄѡȡ¼°¸´ÔÓÐÔ·ÖÎö

ΪʵÏÖͼ13 - 7µÄËã·¨£¬ÐèҪѡÔñA' µÄÃèÊö·½·¨¼°¿¼ÂÇÈçºÎ¼Ç¼AÖнڵãËùÄܸ²¸ÇµÄBÖÐδ¸²¸Ç½ÚµãµÄÊýÄ¿¡£ÓÉÓÚ¶Ô¼¯ºÏA'

½öʹÓüӷ¨ÔËË㣬Ôò¿ÉÓÃһάÕûÐÍÊý×éCÀ´ÃèÊöA '£¬ÓÃm À´¼Ç¼A' ÖÐÔªËØ¸öÊý¡£½«A' ÖеijÉÔ±¼Ç¼ÔÚC[ 0 :m-1]

ÖС£¶ÔÓÚAÖж¥µãi£¬ÁîN e wi Ϊi ËùÄܸ²¸ÇµÄBÖÐδ¸²¸ÇµÄ¶¥µãÊýÄ¿¡£Öð²½Ñ¡ÔñN e wi

Öµ×î´óµÄ¶¥µã¡£ÓÉÓÚһЩԭÀ´Î´±»¸²¸ÇµÄ¶¥µãÏÖÔÚ±»¸²¸ÇÁË£¬Òò´Ë»¹ÒªÐ޸ĸ÷N e wi

Öµ¡£ÔÚÕâÖÖ¸üÐÂÖУ¬¼ì²éBÖÐ×î½üÒ»´Î±»V¸²¸ÇµÄ¶¥µã£¬Áîj ΪÕâÑùµÄÒ»¸ö¶¥µã£¬ÔòAÖÐËùÓи²¸Çj µÄ¶¥µãµÄN e wi Öµ¾ù¼õ1¡£

Àý1-13 ¿¼²ìͼ1 - 6£¬³õʼʱ(N e w1 , N e w2 , N e w3 , N e w16 , N e w17 )

= ( 6 , 4 , 5 , 6 , 4 )¡£¼ÙÉèÔÚÀý1 - 1 2ÖУ¬µÚÒ»²½Ñ¡Ôñ¶¥µã1 6£¬Îª¸üÐÂN e wi

µÄÖµ¼ì²éBÖÐËùÓÐ×î½ü±»¸²¸ÇµÄ¶¥µã£¬ÕâЩ¶¥µãΪ5 , 6 , 8 , 1 2 , 1 4ºÍ1 5¡£µ±¼ì²é¶¥µã5ʱ£¬½«¶¥µã2ºÍ1 6µÄN

e wi Öµ·Ö±ð¼õ1£¬ÒòΪ¶¥µã5²»ÔÙÊDZ»¶¥µã2ºÍ1 6¸²¸ÇµÄδ¸²¸Ç½Úµã£»µ±¼ì²é¶¥µã6ʱ£¬¶¥µã1 , 2 ,ºÍ1

6µÄÏàÓ¦Öµ·Ö±ð¼õ1£»Í¬Ñù£¬¼ì²é¶¥µã8ʱ£¬1£¬2£¬3ºÍ1 6µÄÖµ·Ö±ð¼õ1£»µ±¼ì²éÍêËùÓÐ×î½ü±»¸²¸ÇµÄ¶¥µã£¬µÃµ½µÄN e wi

ֵΪ£¨4£¬1£¬0£¬4£©¡£ÏÂÒ»²½Ñ¡Ôñ¶¥µã1£¬×îб»¸²¸ÇµÄ¶¥µãΪ4£¬7£¬9ºÍ1 3£»¼ì²é¶¥µã4ʱ£¬N e w1 , N e w2, ºÍN

e w1 7 µÄÖµ¼õ1£»¼ì²é¶¥µã7ʱ£¬N e w1 µÄÖµ¼õ1£¬ÒòΪ¶¥µã1ÊǸ²¸Ç7µÄΨһ¶¥µã¡£

ΪÁËʵÏÖ¶¥µãѡȡµÄ¹ý³Ì£¬ÐèÒªÖªµÀN e wi µÄÖµ¼°Òѱ»¸²¸ÇµÄ¶¥µã¡£¿ÉÀûÓÃÒ»¸ö¶þάÊý×éÀ´´ïµ½Õâ¸öÄ¿µÄ£¬N e

wÊÇÒ»¸öÕûÐÍÊý×飬New[i] ¼´µÈÓÚN e wi£¬ÇÒc o vΪһ¸ö²¼¶ûÊý×é¡£Èô¶¥µãiδ±»¸²¸ÇÔòc o v [ i ]µÈÓÚf a

l s e£¬·ñÔòc o v [ i ]Ϊt r u e¡£ÏÖ½«Í¼1 - 7µÄα´úÂë½øÐÐϸ»¯µÃµ½Í¼1 - 8¡£

m=0; //µ±Ç°¸²¸ÇµÄ´óС

¶ÔÓÚAÖеÄËùÓÐi£¬New[i]=Degree[i]

¶ÔÓÚBÖеÄËùÓÐi£¬C o v [ i ] = f a l s e while (¶ÔÓÚAÖеÄijЩi,New[i]>0) { ÉèvÊǾßÓÐ×î´óµÄN e w [ i ]µÄ¶¥µã£» C [ m + + ] = v ;

for ( ËùÓÐÁÚ½ÓÓÚvµÄ¶¥µãj) { if (!Cov[j]) {

Cov[j]= true;

¶ÔÓÚËùÓÐÁÚ½ÓÓÚjµÄ¶¥µã£¬Ê¹ÆäN e w [ k ]¼õ1 } } }

if (ÓÐЩ¶¥µãδ±»¸²¸Ç) ʧ°Ü else ÕÒµ½Ò»¸ö¸²¸Ç

ͼ1-8 ͼ1-7µÄϸ»¯ ¸üÐÂN e wµÄʱ¼äΪO (e)£¬ÆäÖÐe Ϊ¶þ·ÖͼÖбߵÄÊýÄ¿¡£ÈôʹÓÃÁÚ½Ó¾ØÕó£¬ÔòÐ軨(n2 )

µÄʱ¼äÀ´Ñ°ÕÒͼÖеıߣ¬ÈôÓÃÁÚ½ÓÁ´±í£¬ÔòÐè(n+e) µÄʱ¼ä¡£Êµ¼Ê¸üÐÂʱ¼ä¸ù¾ÝÃèÊö·½·¨µÄ²»Í¬ÎªO (n2 ) »òO

(n+e)¡£Öð²½Ñ¡Ôñ¶¥µãËùÐèʱ¼äΪ(S i z e O f A)£¬ÆäÖÐS i z e O f A=| A |¡£ÒòΪAµÄËùÓж¥µã¶¼ÓпÉÄܱ»Ñ¡Ôñ£¬Òò´ËËùÐè²½ÖèÊýΪO ( S i z e O f A )£¬¸²¸ÇËã·¨×ܵĸ´ÔÓÐÔΪO ( S i z

e O f A 2+n2) = O ( n2)»òO (S i z e Of A2+n + e)¡£ 2. ½µµÍ¸´ÔÓÐÔ

ͨ¹ýʹÓÃÓÐÐòÊý×éN e wi¡¢×î´ó¶Ñ»ò×î´óÑ¡ÔñÊ÷£¨max selection tree£©¿É½«Ã¿²½Ñ¡È¡¶¥µãvµÄ¸´ÔÓÐÔ½µÎª( 1

)¡£µ«ÀûÓÃÓÐÐòÊý×飬ÔÚÿ²½µÄ×îºóÐè¶ÔN e wi Öµ½øÐÐÖØÐÂÅÅÐò¡£ÈôʹÓÃÏä×ÓÅÅÐò£¬ÔòÕâÖÖÅÅÐòËùÐèʱ¼äΪ(S i z e O f B

) ( S i z e O fB =|B| ) £¨¼û3 . 8 . 1½ÚÏä×ÓÅÅÐò£©¡£ÓÉÓÚÒ»°ãS i z e O f B±ÈS i z

e O f A´óµÃ¶à£¬Òò´ËÓÐÐòÊý×é²¢²»×ÜÄÜÌá¸ßÐÔÄÜ¡£

Èç¹ûÀûÓÃ×î´ó¶Ñ£¬Ôòÿһ²½¶¼ÐèÒªÖØ½¨¶ÑÀ´¼Ç¼N e wÖµµÄ±ä»¯£¬¿ÉÒÔÔÚÿ´ÎN e wÖµ¼õ1ʱ½øÐÐÖØ½¨¡£ÕâÖÖ¼õ·¨²Ù×÷¿ÉÒýÆð±»¼õµÄN e

wÖµ×î¶àÔÚ¶ÑÖÐÏòÏÂÒÆÒ»²ã£¬Òò´ËÕâÖÖÖØ½¨¶ÔÓÚÿ´ÎN e wÖµ¼õ1Ðè( 1 )µÄʱ¼ä£¬×ܹ²µÄ¼õ²Ù×÷ÊýĿΪO

(e)¡£Òò´ËÔÚËã·¨µÄËùÓв½ÖèÖУ¬Î¬³Ö×î´ó¶Ñ½öÐèO (e)µÄʱ¼ä£¬Òò¶øÀûÓÃ×î´ó¶Ñʱ¸²¸ÇËã·¨µÄ×ܸ´ÔÓÐÔΪO (n2 )»òO (n+e)¡£ ÈôÀûÓÃ×î´óÑ¡ÔñÊ÷£¬Ã¿´Î¸üÐÂN e wֵʱÐèÒªÖØ½¨Ñ¡ÔñÊ÷£¬ËùÐèʱ¼äΪ(log S i z e O f

A)¡£Öؽ¨µÄ×îºÃʱ»úÊÇÔÚÿ²½½áÊøÊ±£¬¶ø²»ÊÇÔÚÿ´ÎN e wÖµ¼õ1ʱ£¬ÐèÒªÖØ½¨µÄ´ÎÊýΪO (e)£¬Òò´Ë×ܵÄÖØ½¨Ê±¼äΪO (e log

S i z e OfA)£¬Õâ¸öʱ¼ä±È×î´ó¶ÑµÄÖØ½¨Ê±¼ä³¤Ò»Ð©¡£È»¶ø£¬Í¨¹ýά³Ö¾ßÓÐÏàͬN e

wÖµµÄ¶¥µãÏä×Ó£¬Ò²¿É»ñµÃºÍÀûÓÃ×î´ó¶ÑʱÏàͬµÄʱ¼äÏÞÖÆ¡£ÓÉÓÚN e wµÄȡֵ·¶Î§Îª0µ½S i z e O f B£¬ÐèÒªS i z e

O f B+ 1¸öÏä×Ó£¬Ïä×Ói ÊÇÒ»¸öË«ÏòÁ´±í£¬Á´½ÓËùÓÐN e wֵΪi µÄ¶¥µã¡£ÔÚijһ²½½áÊøÊ±£¬¼ÙÈçN e w [ 6 ]´Ó1 2±äµ½4£¬ÔòÐèÒª½«Ëü´ÓµÚ1 2¸öÏä×ÓÒÆµ½µÚ4¸öÏä×Ó¡£ÀûÓÃÄ£ÄâÖ¸Õë¼°Ò»¸ö½ÚµãÊý×én o d e£¨ÆäÖÐn o d e [ i

]´ú±í¶¥µãi£¬n o d e [ i ] . l e f tºÍn o d e [ i ] . r i g h tΪ˫ÏòÁ´±íÖ¸Õ룩£¬¿É½«¶¥µã6´ÓµÚ1 2¸öÏä×ÓÒÆµ½µÚ4¸öÏä×Ó£¬´ÓµÚ1 2¸öÏä×ÓÖÐɾ³ýn o d e [ 0

]²¢½«Æä²åÈëµÚ4¸öÏä×Ó¡£ÀûÓÃÕâÖÖÏä×Óģʽ£¬¿ÉµÃ¸²¸ÇÆô·¢Ê½Ëã·¨µÄ¸´ÔÓÐÔΪO (n2

)»òO(n+e)¡££¨È¡¾öÓÚÀûÓÃÁÚ½Ó¾ØÕó»¹ÊÇÏßÐÔ±íÀ´ÃèÊöͼ£©¡£ 3. Ë«ÏòÁ´½ÓÏä×ÓµÄʵÏÖ

ΪÁËʵÏÖÉÏÊöË«ÏòÁ´½ÓÏä×Ó£¬Í¼1 - 9¶¨ÒåÁËÀàU n d i r e c t e dµÄ˽ÓгÉÔ±¡£N o d e Ty p

eÊÇÒ»¸ö¾ßÓÐ˽ÓÐÕûÐͳÉÔ±l e f tºÍr i g h tµÄÀ࣬ËüµÄÊý¾ÝÀàÐÍÊÇË«ÏòÁ´±í½Úµã£¬³ÌÐò1 3 - 3¸ø³öÁËU n d i r e c t e dµÄ˽ÓгÉÔ±µÄ´úÂë¡£ void CreateBins (int b, int n) ´´½¨b¸ö¿ÕÏä×ÓºÍn¸ö½Úµã

void DestroyBins() { delete [] node; delete [] bin;}

void InsertBins(int b, int v) ÔÚÏä×ÓbÖÐÌí¼Ó¶¥µãv

void MoveBins(int bMax, int ToBin, int v) ´Óµ±Ç°Ïä×ÓÖÐÒÆ¶¯¶¥µãvµ½Ïä×ÓTo B i n int *bin;

b i n [ i ]Ö¸Ïò´ú±í¸ÃÏä×ÓµÄË«ÏòÁ´±íµÄÊ×½Úµã N o d e Type *node;

n o d e [ i ]´ú±í´æ´¢¶¥µãiµÄ½Úµã

ͼ1-9 ʵÏÖË«ÏòÁ´½ÓÏä×ÓËùÐèµÄU n d i r e c t e d˽ÓгÉÔ±

----------------------------------------------

plot(100+t+15*cos(3.05*t),t=0..200,coords=polar,axes=none,scaling=constrained);

2004-5-27 19:40:45

b

µÈ¼¶£ºÖ°ÒµÏÀ¿Í ÎÄÕ£º470 »ý·Ö£º956

ÃÅÅÉ£ººÚ¿ÍµÛ¹ú ×¢²á£º2003-8-28

µÚ 8 Â¥

³ÌÐò13-3 Ïä×Óº¯ÊýµÄ¶¨Òå

void Undirected::CreateBins(int b, int n) {// ´´½¨b¸ö¿ÕÏä×ÓºÍn¸ö½Úµã node = new NodeType [n+1]; bin = new int [b+1]; // ½«Ïä×ÓÖÿÕ

for (int i = 1; i <= b; i++) bin[i] = 0; }

void Undirected::InsertBins(int b, int v) {// Èôb²»Îª£°£¬Ôò½«v ²åÈëÏä×Ób if (!b) return; // bΪ0£¬²»²åÈë node[v].left = b; // Ìí¼ÓÔÚ×ó¶Ë if (bin[b]) node[bin[b]].left = v; node[v].right = bin[b]; bin[b] = v;

}

void Undirected::MoveBins(int bMax, int ToBin, int v) {// ½«¶¥µãv ´ÓÆäµ±Ç°ËùÔÚÏä×ÓÒÆ¶¯µ½To B i n . // vµÄ×ó¡¢ÓÒ½Úµã int l = node[v].left; int r = node[v].right; // ´Óµ±Ç°Ïä×ÓÖÐɾ³ý

if (r) node[r].left = node[v].left;

if (l > bMax || bin[l] != v) // ²»ÊÇ×î×ó½Úµã node[l].right = r;

else bin[l] = r; // Ïä×ÓlµÄ×î×ó±ß // Ìí¼Óµ½Ïä×ÓTo B i n

I n s e r t B i n s ( ToBin, v); }

º¯ÊýC r e a t e B i n s¶¯Ì¬·ÖÅäÁ½¸öÊý×飺 n o d eºÍb i n£¬n o d e [i ]±íʾ¶¥µãi,

bin[i ]Ö¸ÏòÆäN e wֵΪiµÄË«ÏòÁ´±íµÄ¶¥µã, f o rÑ­»·½«ËùÓÐË«ÏòÁ´±íÖÃΪ¿Õ¡£Èç¹ûb¡Ù0£¬º¯ÊýInsertBins

½«¶¥µãv ²åÈëÏä×Ób ÖС£ÒòΪb ÊǶ¥µãv µÄNew Öµ£¬b = 0Òâζ×Ŷ¥µãv ²»Äܸ²¸ÇBÖе±Ç°»¹Î´±»¸²¸ÇµÄÈκζ¥µã£¬ËùÒÔ£¬ÔÚ½¨Á¢¸²¸ÇʱÕâ¸öÏä×ÓûÓÐÓô¦£¬¹Ê¿ÉÒÔ½«ÆäÉáÈ¥¡£µ±b¡Ù0ʱ£¬¶¥µãn ¼ÓÈëNew ֵΪb

µÄË«ÏòÁ´±íÏä×ÓµÄ×îÇ°Ãæ£¬ÕâÖÖ¼ÓÈ뷽ʽÐèÒª½«node[v] ¼ÓÈëbin[b] ÖеÚÒ»¸ö½ÚµãµÄ×ó±ß¡£ÓÉÓÚ±íµÄ×î×ó½ÚµãÓ¦Ö¸ÏòËüËùÊôµÄÏä×Ó£¬Òò´Ë½«ËüµÄnode[v].left

ÖÃΪb¡£ÈôÏä×Ó²»¿Õ£¬Ôòµ±Ç°µÚÒ»¸ö½ÚµãµÄleft Ö¸Õë±»ÖÃΪָÏòнڵ㡣node[v] µÄÓÒÖ¸Õë±»ÖÃΪb i n [ b

]£¬ÆäÖµ¿ÉÄÜΪ0»òÖ¸ÏòÉÏÒ»¸öÊ×½ÚµãµÄÖ¸Õë¡£×îºó£¬ b i n [ b ]±»¸üÐÂΪָÏò±íÖÐеĵÚÒ»¸ö½Úµã¡£MoveBins ½«¶¥µãv

´ÓËüÔÚË«ÏòÁ´±íÖеĵ±Ç°Î»ÖÃÒÆµ½New ֵΪToBin µÄλÖÃÉÏ¡£ÆäÖдæÔÚbMa x£¬Ê¹µÃ¶ÔËùÓеÄÏä×Ób i n[ j

]¶¼ÓУºÈçj>bMa x£¬Ôòb i n [ j ]Ϊ¿Õ¡£´úÂëÊ×ÏÈÈ·¶¨n o d e [ v ]ÔÚµ±Ç°Ë«ÏòÁ´±íÖеÄ×óÓҽڵ㣬½Ó×Å´ÓË«Á´±íÖÐÈ¡³ön o d e [ v ]£¬²¢ÀûÓÃI n s e r t B i n

sº¯Êý½«ÆäÖØÐ²åÈëµ½b i n [ To B i n ]ÖС£

4. Undirected::BipartiteCoverµÄʵÏÖ

º¯ÊýµÄÊäÈë²ÎÊýLÓÃÓÚ·ÖÅäͼÖеĶ¥µã£¨·ÖÅäµ½¼¯ºÏA»òB£©¡£L [i ] = 1±íʾ¶¥µãiÔÚ¼¯ºÏAÖУ¬L[ i ] =


ÖйúÊýѧ½¨Ä£-±à³Ì½»Á÷-̰À·Ëã·¨ - 1(4).doc ½«±¾ÎĵÄWordÎĵµÏÂÔØµ½µçÄÔ ÏÂÔØÊ§°Ü»òÕßÎĵµ²»ÍêÕû£¬ÇëÁªÏµ¿Í·þÈËÔ±½â¾ö£¡

ÏÂһƪ£ºÀûÓÃLNMPƽ̨¹¹½¨Discuz!ÂÛ̳¼°ÆäËûPHPÍøÕ¾

Ïà¹ØÔĶÁ
±¾ÀàÅÅÐÐ
¡Á ×¢²á»áÔ±Ãâ·ÑÏÂÔØ£¨ÏÂÔØºó¿ÉÒÔ×ÔÓɸ´ÖƺÍÅŰ棩

ÂíÉÏ×¢²á»áÔ±

×¢£ºÏÂÔØÎĵµÓпÉÄÜ¡°Ö»ÓÐĿ¼»òÕßÄÚÈݲ»È«¡±µÈÇé¿ö£¬ÇëÏÂÔØÖ®Ç°×¢Òâ±æ±ð£¬Èç¹ûÄúÒѸ¶·ÑÇÒÎÞ·¨ÏÂÔØ»òÄÚÈÝÓÐÎÊÌ⣬ÇëÁªÏµÎÒÃÇЭÖúÄã´¦Àí¡£
΢ÐÅ£º QQ£º