(2)若点P是抛物线上位于点B、D之间的一个动点(不与B、D重合),在直线BC上有一动点E,x轴上有一动点F,当四边形ABPD的面积最大时,一动点G从点P出发以每秒1个单位的速度沿P→E→F的路径运动到点F,再沿线段FA以每少2个单位的速度运动到A点后停止,当点F的坐标是多少时,动点G的运动过程中所用的时间最少? (3)如图2,过点Q作x轴的垂线交AC于点H,连接AQ,点R为线段AQ上一动点,连接RH,将△QRH沿RH翻折到△Q1RH且Q1在直线AQ的左侧,当△Q1RH和△ARH的重叠部分为Rt△RHS时,将此Rt△RHS绕点R逆时针旋转α(0°<α<180°),记旋转中的△RHS为△RH′S′,若直线H′S′分别与直线AQ、直线QH交于点M、N,当△MNQ是等腰三角形时,求MQ的值。