基于单片机的数字万用表的设计(2)

2019-04-10 19:36

1 前言

1.1 课题的提出

数字万用表是一种多用途电子测量仪器。它采用数字化测量技术,把实际测量的模拟量,转化为离散的数字量进行输出显示,主要用于物理、电气、电子等测量领域,一般包含电流表(安培计)、电压表(伏特计)、电阻表(欧姆计)等功能,也称为万用计、多用计、多用电表或万用电表。 1.2 研究的意义

万用表是电子和电气技术领域必备的测量仪器,用于测量电子电路中的各种物理量(电压、电流、电阻等),常作为基本故障诊断的便携式装置,也有放置在工厂或实验室工作台上作为桌上型装置。有的万用电表分辨率能达到七、八位数,常用在实验室,作为电压或电阻的基准,或用来调校多功能标准器的性能。相比传统的指针式万用表,数字万用表具有以下的主要优点:

(1)数字显示直观准确,无视觉误差,读数准确; (2)测量精度和分辨率都很高;

(3)输入阻抗高,减少对被测电路的工作影响(李明生,2007); (4)电路集成度高,便于组装和维修; (5)测量功能齐全,测量速率快;

(6)保护功能齐全,有过压、过流保护电路; (7)功耗低,抗干扰能力强; (8)便于携带,使用方便。 1.3 设计的任务

本次设计的任务是制作一个数字万用表,可实现如下的功能及要求: (1) 可以测量直流电压、直流电流和电阻;

(2) 能将测量得到的数值直观、准确地显示出来,并标明相应的单位; (3) 具有超量程时的报警提示。

2 总体方案确定

2.1 方案比较及选择 2.1.1 模数转换芯片方案

方案一:积分型模数转换芯片

1

积分型模数转换器又称双斜率或多斜率数据转换器,是典型的双斜率转换器。积分型转换器包含两个主要的转换步骤:前端的电路负责输入模拟电压的采样和量化,产生一个在时域上间隔的的脉冲序列,然后将脉冲输入计数器并转换为数字进行输出。

积分型转换器由一个可进行输入通道切换的模拟积分器、一个比较器及一个计数器组成。在一个固定的时间间隔内,积分器对输入电压信号进行积分。定时时间到后,计数器被复位并将其输入连接到反向极性的基准电压端上。由于反极性信号中的作用,积分器会进行反向积分,直到输出为零,使计数器中止工作复位积分器。积分型模数转换器的精度可以达到很高,有效抑制高频噪声和固定的低频干扰,适合在嘈杂的工业环境及对转换速率要求较低的场合下使用。图1所示为双积分型模数转换器的原理框图。

模拟输入uISRCCPuO2+-UREF-A1uO1-A2+&清零CPResetC计数器积分器检零比较器控制电路EN锁存器开关控制D7D6D5D4D3D2D1D0

图1 积分型模数转换器原理框图

方案二:逐次比较(逼近)型模数芯片

逐次比较型转换器包含一个比较器、一个数模转换器、一个数码寄存器和一个电路控制单元。转换时的逐次逼近是按对分原理,由控制电路完成的。在逻辑控制电路产生的时钟信号驱动下,数码寄存器不断进行比较和移位操作,直至完成全部有效位的转换。此时数码寄存器的各位的值都已确定,转换步骤完成。

由于逐次逼近型模数转换器在单个时钟周期内只能完成1位转换,N位转换需要N个时钟周期,因此这种模数转换器采样速率不高,输入带宽也较低。图2所示为逐次比较型模数转换器的原理框图。

2

D/A转换器uOD2D1D0二进制代码输出D2D1D0CP比较器uI+数码寄存器-控制电路模拟电压输入

图2 逐次比较型模数转换器原理框图

方案三:并联比较型模数芯片

并联比较型模数转换器由电阻分压器、电压比较器及编码电路组成,输出的各位数码是一次形成的,它是转换速度最快的一种模数转换器。图3所示为并联比较型模数转换器的原理框图。

+UREF模拟输入R比较器+Q7Q6优先编码器Q5Q476543210ENuI78UREFR68UREFR5UREF8R4UREF8R3UREF8R2UREF8R1UREF8R-------++++++Q3Q2Q1D2并行二进D1制代码输出D0采样脉冲

图3 并联比较型模数转换器原理框图

图3中,8个大小相等的电阻串联构成电阻分压器,产生不同数值的参考电压,共形成共7种量化电平。7个量化电平分别加在7个电压比较器的反相输入端,模拟输入电压加在比较器的同相输入端。当模拟输入电压大于或等于量化电平时,比较器输出为1,否则输出为0,电压比较器用来完成对采样电压的量化。

3

并联比较型模数转换器转换精度主要取决于量化电平的划分,分得越精细,精度越高。这种转换器的最大优点是具有较快的转换速度,但所用的比较器及其他硬件较多,输出数字量位数越多,转换电路将越复杂。由此可知,该类型的模数转换器适用于高速度、低精度要求的场合。

方案选择:三个方案相比较,方案一中的积分型模数转换器的采样速度和带宽都非常低,难以满足本系统的实时性要求。与方案一和方案二相比,方案三中的并联型模数转换器转换速度更高,但是当精度要求较高时,转换电路将变得复杂且成本较高,因此,选择方案二的逐次比较型模数转换器,拥有中等的转换速度,且可以达到一定的精度水平。

2.1.2 显示器方案

方案一:LED(Light Emitting Diode)数码管显示器

LED数码管实际上是由七个发光管组成8字形,并加上小数点共八个发光二极管构成。这些发光二极管构成段,当特定的段被加上电压后,这些特定的段就会发亮,以形成我们能看到的字样。LED数码管通常能够显示的数字和字母有0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F。

LED数码管的驱动形式通常分为静态式和动态式两类:

(1)静态驱动也称直流驱动,是指每个数码管的每一个段码,都由一个单片机的I/O口进行驱动,或者使用BCD码的二-十进位器进行驱动。静态驱动的优点是编程简单,显示亮度高,但缺点也比较明显,占的用I/O口很多,耗费了单片机的资源并增加了硬体电路的复杂性。

(2)动态驱动是将所有数码管的各个显示段的同名端相连,另外为每个数码管的公共端增加位选通电路。使用时,控制电路根据数码管选取的不同,在特定的位置上显示字符。透过分时技术轮流地控制每个数码管,使各个数码管轮流进行发光显示,由于人眼的视觉残留现象及LED的余辉效应,会出现各个位上的数码管在同时显示的假象。相比静态驱动,动态驱动节省单片机的I/O口,硬件电路更加简化,但显示亮度会明显降低且可能有闪烁感。

方案二:1602液晶显示器

1602液晶显示器是一个两行每行16个5×7点阵字符的微型液晶显示器,可以显示较多ASCII标准的字符。1602液晶只有16个引脚,仅包含必要的数据线及数根控制线。

4

1602液晶显示的不需要占用单片机大量的扫描时间,而仅在需要显示的时候调用液晶的控制子函数即可。而且1602液晶可以通过ASCII码来显示字符,并在内部集成了存储160个字符ASCII码的寄存器,可以直接显示ASCII码表示的字符。而且液晶能比数码管显示更多的字符,增强了系统显示输出的可读性和直观性。

方案选择:与方案二相比,方案一中的数码管,虽然成本较低,但是耗费大量的单片机资源,不利于后续系统的设计。而且液晶显示的视觉效果和可读性远优于数码管,且节省单片机资源,因此选择方案二。 2.2 确定设计方案

经过了上述的比较,最终的方案是:使用逐次比较型模数转换芯片,获取系统良好的实时性及相对高的精度;使用1602液晶作为数据输出显示器,提高系统的人机交互方面的友好性。

3 系统硬件分析及设计

3.1 数字万用表的基本原理

数字万用表的基本功能是,能够测量直流电压、电流以及电阻的阻值,数字万用表的基本组成由图4所示,其中,模数转换是数字万用表的核心(杨建平,2004):

数值显示屏(数码管或液晶) 小数点驱动 译码驱动 基准电压 数模转换,数值输出 过压过流保护 基准电阻 被测量信号 分压器 过压过流保护 分流器

图4 数字万用表的基本原理图

3.1.1 模数转换及显示电路原理

实际的物理量都是幅值大小连续变化的模拟量,或称为模拟信号。旧式的指针万用表可以直接对模拟电压、电流进行测量并显示。对于数字万用表,则需要把模拟量(多

5


基于单片机的数字万用表的设计(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:母婴护理师(高级)课程笔试试卷一试卷

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: