MDEA天然气脱硫工艺流程(3)

2019-04-13 18:03

化剂上反应,由于反应放热,出口气温度明显升高,经二级冷凝器回收热量并分离出液态硫之后的气相,经二级再热器再热达到需要的温度,进入二级转化器,催化转化后温度升高,经三级冷凝器回收热量并分离出液态硫,分出液态疏后的气相进入第三级再热器,再热后进入三级转化器,使H2S和SO2最大限度地转化为硫,从三级转化器出来的气相经四级冷凝器冷却以除去最后生成的硫。分离出液态疏后的尾气通过捕集器,进一步捕集液态硫后进入尾气处理装置进一步处理后排放。各级冷凝器及捕集器中分离出来的液态硫流人硫储罐,经成型后即为硫磺产品。

3 脱硫装置

3.1 脱硫工艺方法选择

3.1.1 脱硫的方法

目前,国内外已见的天然气脱硫方法名目繁多,不下数十种。如果以脱硫剂的状态来分,则天然气脱硫法可分为干法和湿法两大类。

干法---采用固体型的脱硫吸附剂,这类固体物质包括天然泡沸石、分子筛和海绵状氧化铁等。

湿法---采用各类液体溶液脱硫剂。此法多用于高压天然气中酸性气体组分含量较多的情况湿法本身又可按条件分为:化学吸收法、物理吸收法、复合法和直接氧化法。

化学吸收法基于可逆化学反应。吸收剂在吸收塔内与H2S和CO2进行反应,在解吸塔内用提高温度或降低压力的办法使向相反方向进行。各种胺溶液是应用品广泛的脱硫吸收剂。除了各种醇胺法以外,碱性盐溶液和氨基酸盐法亦属于化学吸收脱硫法。

物理吸收法是基于吸收剂的选择性吸收来分离抽取天然气中酸性组分,其操作类似于天然气工厂中油吸收法。在物理吸收过程中,可采用N-甲基吡咯烷酮、碳酸丙烯酯、丙酮、甲醇等作为吸收剂。由于吸收剂的吸收能力实际上与气相中酸性组分的分压成正比,故而本法对处理高含酸性组分的天然气特备有效。

复合法同时使用混合的化学和物理吸收剂。本法中最得以广泛应用的是Sulfinol法,其中使用环丁砜和任一化学吸收剂相组合的溶液作为脱硫剂。Sulfinol

第- 11 -页

溶液通常是有环丁砜、二异丙醇胺和水组成。在确定Sulfinol砜胺溶液配比时,应考虑依据使用条件不同而异。

醇胺法是目前最常用的天然气脱硫脱碳方法。据统计,20世纪90年代美国采用化学溶剂法的脱硫脱碳装置处理量约占总处理量的72%,其中有绝大多数是采用醇胺法。

20世纪30年代最先采用的醇胺法是三乙醇胺(TEA),因其反应能力和稳定性差已不再采用。目前,主要采用的是一乙醇胺(MEA)、常规的二乙醇胺(DEA)、二异丙醇胺(ADIP)、二甘醇胺(DGA)和甲基二乙醇胺(MDEA)等溶剂。

醇胺法适用于天然气中酸性组分含量低的场合。由于醇胺法使用的是醇胺水溶液,溶液中含水可使被吸收的重烃降低至最少程度,故非常适用于重烃含量高的天然气脱硫脱碳。MDEA等醇胺溶液还具有在CO2存在下选择性脱出H2S的能力

醇胺法的缺点是有些醇胺与COS和CS2的反应时不可逆的,会造成那个溶剂的化学降解损失,故不宜用于COS和CS2含量高的天然气脱硫脱碳。醇胺还具有腐蚀性,与天然气中的H2S和CO2等会因其设备腐蚀。此外,醇胺作为脱硫脱碳溶剂,其富液(即吸收了天然气中酸性组分后的溶液)在再生时需要加热,不仅能耗较高,而且在高温下再生时也会发生热降解,所以损耗较大。

由于醇胺法的吸收能力较强,且本设计中,在脱除H2S的同时需脱除相当量的CO2,即要求选择性脱硫,而原料气中有不含有机硫,故选择醇胺法来进行脱硫脱碳处理。

3.1.2醇胺法脱硫的基本原理

乙醇胺是无色的液体,常压下沸点为170℃,比重为1.019 g/cm。它是一种有机碱溶液,它的碱性与氨相似,是氨的衍生物。

乙醇胺结构始终至少有一个氨基,这个氨基提供了在水中的碱度,促使对于酸性气体H2S、CO2有很高的吸收能力。乙醇胺的结构式中还有一个烃基,这个烃基的作用可以降低化合物的蒸汽压,减少气相中乙醇胺的损失,并且增加了在水中的溶解度,使乙醇氨可按任意比与水互溶。乙醇胺吸收H2S、CO2时,生成硫化物、酸式硫化物、碳酸盐、酸式碳酸盐,其反应式如下:

???(RNH)S2RNH2?H2S???323

?RNH3?2S???2RNHHS?H2S???3第- 12 -页

???(RNH)CO 2RNH2?H2O?CO2???323???2RNHHCO (RNH3)2CO3?H2O?CO2???33???RNHCOONHR2RNH2?CO2???2

反应方程式中R?CH3CH2OH?

乙醇胺吸收反应是放热反应,从化学平衡观点来看,温度愈低,愈有利于吸收反应。所以温度一般控制在25-40℃为宜。

吸收了H2S、CO2的乙醇胺溶液,当温度升高至105℃以上,则生成物就要分解,生成反应物,这就是乙醇胺的再生。再生温度的提高对溶液再生是有好处的,因为温度提高后,溶液表面上酸性气体的分压迅速增加。

提高压力有利于吸收,同时也提高了H2S的分压,增大了吸收的推动,提高了溶液的吸收能力。

富液再生的压力一般为常压,因为乙醇胺溶液再生是在该压力下塔底溶液沸腾温度下再生的,压力提高后,相对应的溶液沸腾温度亦高,但由于压力高而相对应的H2S、CO2的分压亦高了。此时,H2S、CO2的分压增加而使硫化物、碳酸盐离解降低的作用比升高温度而使离解增加的作用更为显著,因此再生的压力一般为常压。

3.2 常用醇胺溶液性能比较

醇胺法特别适用于酸气分压低和要求净化气中酸气含量低的场合。由于采用的是水溶液可减少重烃的吸收量,故此法更适合重烃的气体脱硫脱碳。

通常,MEA法、DEA法、DGA法有成为常规醇胺法,基本上可同时脱除气体中的H2S、CO2;MDEA法和DIPA法又称为选择性醇胺法,其中MDEA法是典型的选择性脱H2S法,DIPA法在常压也可选择性的脱除H2S。此外,配方溶液目前种类繁多,性能各不相同,分别用于选择性脱H2S,在深度或不深度脱除H2S的情况下脱除一部分或大部分CO2,深度脱除CO2,以及脱除COS等。

醇胺分子结构至少有一个羟基和一个胺基。羟基:可降低化合物的蒸汽压,增加醇胺在水中的溶解度,可配制成水溶液。胺基:水溶液提供碱度,促进对酸性组分的吸收。醇胺与H2S、CO2的主要反应如下:

伯胺:

第- 13 -页

???RNH??HS? RNH2?H2S???3 (瞬间反应)

???RNH??RNHCOO? 2RNH2?CO2???3(中速反应)

???RNH??HCO? (慢反应) RNH2?CO2?H2O???33

仲胺:

???RNH??HS?R2NH?H2S???22

(瞬间反应)

?? ??? 2RNH2?CO2??(中速反应) RNH?RNCOO?222

???RNH??HCO?R2NH?CO2?H2O???223 (慢反应)

叔胺:

'???RR'NHR2RN?H2S???2??HS?

(瞬间反应)

R2R'N?CO2 (不反应)

???RR'NH??HCO? (慢反应) R2R'N?CO2?H2O???23醇胺与H2S、CO2的主要反映均为可逆反应。当酸性组分P高或T低时,反应向右进行,贫液从原料气中吸收酸性组分(正反应),并且放热。当酸性组分P低或T高时,反映向左进行,富液将酸性组分释放出来使溶液再生(逆反应),并且吸热。

3.1.2.1几种方法性质比较

主要天然气脱硫溶剂的性质

性质

分子式 相对分子质量

20相对密度d20

MEA

HOC2H4NH2 61.08 1.0179 10.2 170.4 93.3 1.4539 28

DEA DIPA MDEA (HOC2H4)2NH (HOC3H6)2NH (HOC2H4)2NCH3 105.14 1.0919 28 268.4 137.8 1.4776 <1.33

133.19 0.989 42 248.7 123.9 1.4542(45) <1.33

119.17 1.418 -14.6 230.6 126.7 1.469 <1.33

环丁砜 C4H8SO2 120.14 1.2614 28.8 285 176.7 1.4820(30)

0.6

凝点/℃ 沸点/℃

闪点(开杯)/℃ 折射率

蒸汽压(20/℃)/Pa 黏度mPa.s

24.1(20/℃) 380(20/℃) 198(45/℃) 101(45/℃) 10.286(30/℃)

第- 14 -页

比热容 [kJ/(kg.℃)] 2.54(20/℃) 2.51(20/℃) 2.89(30/℃) 2.24(15.6/℃) 1.34(25/℃) 热导率 [W/(m.K)] 0.256 0.22 - 0.275(20/℃) -

1.92

汽化热 (kJ/kg) 1.56 (9.73KPa) 1 (9.73KPa) 1.21 (101.3KPa) -

(101.3KPa)

水中溶解度

完全互溶 0.964 0.87 完全互溶 完全互溶

(20/℃)

①一乙醇胺(MEA)

MEA可用于低吸收压力和净化气质质量指标要求严格的场合。MEA可从气体中同时脱除H2S和CO2因此没有选择性。净化气中H2S的浓度可低达5.7mg/m3。在中低压情况下CO2浓度可低达100×10-6(体积分数)。MEA也可脱除COS、CS2,但是需要采用复活釜,否则反应是不可逆的。即就是有复活釜,反应也不能完全可逆,故会导致溶液损失和在溶液中出现降解产物的积累。MEA的酸气负荷上限通常为0.3-0.5mol酸气/mol MEA,溶液质量浓度一般应限定在10%-20%。如果采用缓蚀剂,则可使溶液浓度和酸气负荷显著提高。由于MEA蒸汽压在醇胺类中最高,故在吸收塔、再生塔中蒸发损失量最大,但可采用水洗的方法降低损失。

②二乙醇胺(DEA)

DEA不能像MEA那样在低压下使气体处理后达到输管要求,而且也没有选择性。如果酸气分压高而且总压高,则可采用具有专利权的SNPA-DEA法。此法可用于高压且具有较高H2S/CO2比的酸气含量高的气体。专利上所表示的酸气负荷为0.9-1.3mol酸气/molDEA。

与MEA相比,DEA的特点为:DEA的碱性和腐蚀性较MEA弱,故其溶液浓度和酸气负荷较高,溶液循环量、投资和操作费用都较低;由于DEA生成不可再生的降解产物数量较少,故不需要复活釜;DEA与H2S和CO2的反应热较小,故溶液再生所需的热量较少;DEA与COS、CS2反应生成可再生的化合物,故可在溶液损失很小的情况下部分脱除COS、CS2;蒸发损失较少。

③三甘醇胺

DGA是伯醇胺,不仅可脱除气体和液体中的H2S和CO2,而且可以脱除COS和RSH,故广泛用于天然气和炼厂气脱硫脱碳。DGA可在压力低于0.86MPa下将气体中的H2S脱除至5.7 mg/m3。DGA溶液浓度在50%时的凝点为—34℃,故可适用于高寒地区。由于降解反应速率达,所以DGA系统需要采用复活釜。此外,它与CO2、

第- 15 -页


MDEA天然气脱硫工艺流程(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:在法院人民陪审员培训班上的讲话

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: