?
(3)
1a012?3?1an?11?11???1??(?)?(?)??????22a0a1a0a223?an?1an?11111(n?1)n?1?(1?12)?(12?13)???(1n?1?1n)?2?1n?
?1n2?1?11?2????
又a0?12∴an?n. ?,?∵an?an?1?1n2an?12?an?1?1n2(n?1)?an?1?n?n?1n22an?1,
∴an?1?n22n?n?11nan.
1n2∴an?an?1?2an?12?an?1?1an?1?1nn22n?n?11n?11an?an?1?n22n?n?1anan?1.
∴
1an?11a1??1an?(?1n?n?1?1a2?)?(561a22?n?n1a3)??(2???.
∴
1an341a1?1an?11?11111111)?? )?(?)?(?)??(?nn?12n?1an2334∵a1?,∴
1an?1n?1?1?|n?1?n?2n?1,∴an?n?1n?2.
综上所述,
n?1n?2?an?n.
13x?x?3x?3,
3220.解:(1)当a??3时,f?x??2∴f??x??x?2x?3??x?3??x?1?.
令f??x?=0, 得 x1??1,x2?3.
当x??1时,f'?x??0, 则f?x?在???,?1?上单调递增;
'当?1?x?3时,f当x?3时,f'?x??0, 则f?x?在??1,3?上单调递减;
?x??0, f?x?在?3,???上单调递增.
13?1?3?3?143∴ 当x??1时, f?x?取得极大值为f??1???;
- 6 -
?
当x?3时, f?x?取得极小值为f?3??13?27?9?9?3??6.
(2) ∵ f??x?= x2?2x?a,∴△= 4?4a= 4?1?a? .
① 若a≥1,则△≤0, ∴f??x?≥0在R上恒成立,∴ f(x)在R上单调递增 . ∵f(0)??a?0,f?3??2a?0,
∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点.
② 若a<1,则△>0,∴f??x?= 0有两个不相等的实数根,不妨设为x1,x2,(x1 x1 0 极大值 (x1,x2) - ↘ x f??x? ???,x1? + ↗ x2 0 极小值 ?x2,??? + ↗ f(x) ∵x12?2x1?a?0,∴a??x12?2x1. ∴f?x1?? ?131332x1?x1?ax1?a?13x1?x1?ax1?x1?2x1?32213x1??a?2?x1 3x1x1?3?a?2?. 2??同理f?x2??13x2x2?3?a?2?. 2??∴f?x1??f?x2?????19191949x1x2x1?3?a?2??x2?3?a?2? 22?????x1x2???x1x2?2?3?a?2?x1?x2?9?a?2?22??2? 2aa?3?a?2??x1?x2??2x1x2?9?a?2?22????? aa?3a?3. 2? 令f(x1)·f(x2)>0, 解得a>0. 而当0?a?1时,f?0???a?0,f?3??2a?0, 故当0?a?1时, 函数f(x)的图象与x轴有且只有一个交点. 综上所述,a的取值范围是?0,???. - 7 -