第六章 习题
1)
1) 苯酚(C6H5OH)(A)和对甲酚(C6H4(CH3)OH)(B)的饱和蒸汽压数据为: 苯酚蒸汽压0pA温度 t℃ 113.7 114.6 115.4 116.3 117.0 对甲酚蒸汽压0pB kPa kPa 7.70 7.94 8.2 8.5 8.76 温度 t℃ 117.8 118.6 119.4 120.0 苯酚蒸汽压0pA对甲酚蒸汽压pB kPa 9.06 9.39 9.70 10.0 0 kPa 10.0 10.4 10.8 11.19 11.58 11.99 12.43 12.85 13.26 试按总压P=75mmHg(绝压)计算该物系的“t—x—y”数据。此物系为理想物系。
解:xA?P?pB000pA?pBpxyA?AAPpB0kPa 7.70 7.94 8.2 8.5 8.76 9.06 9.39 9.70 10.0 0(x,y—mol分率) xA 1.0 0.837 0.692 0.558 0.440 0.321 0.201 0.0952 0.000 xB 1.0 0.871 0.748 0.624 0.509 0.385 0.249 0.122 0.000 t0C pA0kPa 113.7 10.0 114.6 10.4 115.4 10.8 116.3 11.19 117.0 11.58 117.8 11.99 118.6 12.43 119.4 12.85 120.0 13.26 2)承第1题,利用各组数据算
①在x=0至x=1范围内各点的相对挥发度αi,取各αi的算术平均值α,算出α
对αi的最大相对误差。
②以平均α作为常数代入平衡方程式算出各点的“y—xi”关系,算出由此法得出各组yi值的最大相对误差。
解:①?i?(p0B/p0A)i,计算结果如下:
113.7 t0C ?i 1.299 114.6 115.4 116.3 117.0 117.8 118.6 119.4 120.0 1.310 1.317 1.316 1.322 1.323 1.324 1.325 1.326
????ni?1.318最大误差?1.318?1.299?1.46%1.299
2)yi? t0C xi yi ?xi1?(??1)xi?按1.318计,结果如下:
113.7 114.6 115.4 116.3 117.0 117.8 118.6 119.4 120.0 1.0 0.837 0.692 0.558 0.440 0.321 0.201 0.0952 0 1.0 0.871 0.748 0.625 0.509 0.384 0.249 0.122 0 0.384?0.385??2.60?10?30.385 最大误差=
3)已知乙苯(A)与苯乙烯(B)的饱和蒸汽压与温度的关系可按下式算得:
式中p0的单位是mmHg,T的单位是K。
问:总压为60mmHg(绝压)时,A与B的沸点各为多少℃?在上述总压和65℃
时,该物系可视为理想物系。此物系的平衡汽、液相浓度各为多少摩尔分率?
解:1)令p0A?p,算得的t为A的沸点Ln60?16.0195?3279.47(/T?59.95)?TA?334.95K?61.80C令p0B?p,算得的t为B的沸点Ln60?16.0193?3328.57(/T?63.72)
?TB?342.85K?69.70C
2)p?60mmHg,t?650C?338.15KLnp0A?16.0195?3279.47(/338.15?59.95)?p0A?68.81mmHg
Lnp0B?16.0193?3328.57(/338.15?63.72)?p0B?48.92mmHg60?48.92xA??0.55768.81?48.9268.81?0.557?0.63960
yA?
4)苯(A)和甲苯(B)混合液可作为理想溶液,其各纯组分的蒸汽压计算式为
式中p0的单位是mmHg,t的单位是℃。
试计算总压为850mmHg(绝压)下含苯25%(摩尔百分率)的该物系混合液的泡点。
解:设t?104.150CLgp0A?6.906?1211(/104.15?220.8)?p0A?1511mmHgLgp0B?6.955?1345(/104.15?219.5)?p0B?629.9mmHg
xA?850?629.9?0.251511?629.9所设正确,泡点为104.150C
5)试计算总压为760mmHg(绝压)下,含苯0.37、甲苯0.63(摩尔分率)的混合蒸汽的露点。若令该二元物系降温至露点以下3℃,求平衡的汽、液相摩尔之比。
解:1)设露点为102.250CLgP0A?6.906?1211(/102.25?220.8)?P0A?1436.7mmHgLgP0B?6.955?1345(/102.25?219.5)?P0B?595.3mmHg760?595.3xA??0.19571436.7?595.3即所设正确,露点为102.250C2)P?760mmHgyB?1436.7?0.1957?0.37760
t?102.25?3?99.250CLgP0A?6.906?1211(/99.25?220.8)?P0A?1325mmHg
LgP0B?6.955?1345(/99.25?219.5)?P0B?543.7mmHgxA?760?543.71325?0.2768?0.2768yA??0.48261325?543.7760汽相的摩尔数0.37?0.2768??0.828液相的摩尔数0.4826?0.37
6)有一苯(A)、甲苯(B)、空气(C)的混合气体,其中空气占2%,苯与甲苯浓度相等(均指摩尔百分数),气体压强为760mmHg(绝压)。若维持压强不变,令此三元物系降温至95℃,求所得平衡汽相的组成。A、B组分均服从拉乌尔定律。已知95℃时
,
。
解:设原来混合气量为1kmol,汽液平衡时汽相为Vkmol,液相为Lkmol。空气苯苯甲苯0.02?yC?V760yA?1163xA(1)(2)(3)0.49?yA?V?(1?V)xA760(1?yA?yC)?475(1?xA)(4)由四个独立方程可解出xA,yA,yC,V四个未知量‘试差方法:设xA经(3)?yA经(4)?yC经(1)?V经(2)?xA?重设xA试差过程数据示例:
设XA 0.38 0.378 0.377 0.376 算得的X‘A 0.324 0.352 0.363 0.373 ,yA?0.575,yC?0.0346,V?0.578kmol 解得:xA?0.3767)常压下将含苯(A)60%,甲苯(B)40%(均指摩尔百分数)的混合液闪
蒸(即平衡蒸馏),得平衡汽、液相,汽相摩尔数占总摩尔数的分率——汽化率(1-q)为0.30。物系相对挥发度α=2.47,试求:闪蒸所得平衡汽、液相的浓度。
若改用简单蒸馏,令残液浓度与闪蒸的液相浓度相同,问:馏出物中苯的平均浓度为多少?
提示:若原料液、平衡液、汽相中A的摩尔分率分别以xf、x、y表示,则存在如下关系:
。
解:1)闪蒸xfqy?x?(y,x为平衡汽,液相的摩尔分率)q?1q?1y??0.70x/0.30?0.60/0.30??2.33x?2.02.47x1?(2.47?1)x解得x?0.539y?y?0.7422)简单蒸馏Ln(w1/w2)?{Ln(x1/x2)??Ln([1?x2)(/1?x1)]}(/??1)?{Ln([0.60/0.539)?2.47Ln([1?0.539)(/1?0.60)]}(/2.47?1)?0.311?w1/w2?1.365y(平均)?x1?w((/w1?w2)2x1?x2)?0.60?(0.60?0.539)(/1.365?1)?0.767
8)某二元物系,原料液浓度xf=0.42,连续精馏分离得塔顶产品浓度xD=0.95。已知塔顶产品中易挥发组分回收率η=0.92,求塔底产品浓度xw。以上浓度皆指易挥发组分的摩尔分率。
解:??DxD(/Fxf)即0.92?0.95D/0.42F?D/F?0.4067且W/F?1?D/F?1?0.4067?0.5933物料衡算式:Fxf?DxD?WxW?xW?0.0567即xf?(D/F)xD?(W/F)xW
代入数据:0.42?0.4067?0.95?0.5933xW9)某二元混合液含易挥发组分0.35,泡点进料,经连续精馏塔分离,塔顶产品浓度xD=0.96,塔底产品浓度xw=0.025(均为易挥发组分的摩尔分率),设满足恒摩尔流假设。试计算塔顶产品的采出率D/F。
若回流比R=3.2,泡点回流,写出精馏段与提馏段操作线方程。
解:1)按杠杆规则D/F?(x?x)(/x?x)?(0.35?0.025)(/0.96?0.025)?0.3476