二元一次方程组解应用题专题分类常见十三类

2019-04-14 18:54

常见十三类二元一次方程组解应用题专题分类讲解

要点突破:

应用二元一次方程组解决实际问题的基本步骤回顾: (1)理解问题 (审题,搞清已知和未知,分析数量关系) (2)制定计划 (考虑如何根据等量关系设元,列出方程组) (3)执行计划 (列出方程组并求解,得到答案)

(4)回顾 (检查和反思解题过程,检验答案的正确性以及是否符合题意)

列方程组思想:

找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等. (1) 行程问题:(2)工程问题;(3)销售中的盈亏问题;(4)储蓄问题;(5)产品配套问题;(6)增长率问题;(7)和差倍分问题;(8)数字问题; (9)浓度问题; (10)几何问题; (11)年龄问题;(12)优化方案问题.

一、 行程问题

(1) 三个基本量的关系:

路程s=速度v×时间t 时间t=路程s÷速度V 速度V=路程s÷时间t

(2) 三大类型:

① 相遇问题:快行距+慢行距=原距 ② 追及问题:快行距-慢行距=原距

③ 航行问题:顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速; 顺速 + 逆速 = 2船速 顺水的路程 = 逆水的路程

相遇问题: 两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类..

问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。

A车路程

B车路程

- 1 -

A车路程+B车路程=相距路程 总路程=(甲速+乙速)×相遇时间 相遇时间=总路程÷(甲速+乙速) ..............

另一个速度=甲乙速度和-已知的一个速度

甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,

那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度.

练习:学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇?相遇时二人各行了多少米?

追及问题:两物体速度不同向同一方向运动,两物体同时运动,一个在前,一个在后,前后相隔的路程若把它

叫做“追及的路程”,那么,在后的追上前一个的时间叫“追及时间”. 追击

B车追击路程

A车先行路程

A车后行路程

关系式是: 追及的路程÷速度差=追及时间 ..............

顺速–逆速 = 2水速;顺速 + 逆速 = 2船速 顺水的路程 = 逆水的路程

A、B两地相距28千米,甲乙两车同时分别从A、B两地同一方向开出,甲车每小时行32千米,乙车每小时行25千米,乙车在前,甲车在后,几小时后甲车能追上乙车?

甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。二人的平均速度各是多少? 解:设甲每小时走x千米,乙每小时走y千米 题中的两个相等关系:

- 2 -

1、同向而行:甲的路程=乙的路程+ 可列方程为: 2、相向而行:甲的路程+ = 可列方程为: 【变式】

1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?

2. 甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围?

3. 从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米, 平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。甲地到乙地全程是多少?

4. 甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.

5. 两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.

6. 某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.

7. 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,

- 3 -

则要迟到15分钟。求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?

总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

一只船在河中航行,水速为每小时2千米,它在静水中航行每小时8千米,顺水航行每小时行多少千米?逆水航行每小时行多少千米?顺水航行50千米需要用多少小时?

练习: 1.某船在静水中的速度是每小时7千米,水流速度是每小时2千米,那么它逆水中的速度是多少?若逆水航行3小时,可航行多少千米?

2. 某船顺水速度是每小时17千米,逆水航行速度是每小时10千米,那么此船的静水速度是每小时多少千米?水流速度是每小时行多少千米?

3. 两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

- 4 -

二、 工程问题

三个基本量的关系:

工作总量=工作时间×工作效率; 工作时间=工作总量÷工作效率;

工作效率=工作总量÷工作时间 甲的工作量+乙的工作量=甲乙合作的工作总量, 注:当工作总量未给出具体数量时,常设总工作量为“1”。

一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?

总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进行分析。

【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.

1. 现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件

- 5 -


二元一次方程组解应用题专题分类常见十三类.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:17年工程部工程及前期工作方案调研

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: