压下,电压增加微小量△V,正向电流相应增加△I,则△V/△I称微分电阻 RBB---双基极晶体管的基极间电阻 RE---射频电阻 RL---负载电阻 Rs(rs)----串联电阻 Rth----热阻
R(th)ja----结到环境的热阻 Rz(ru)---动态电阻 R(th)jc---结到壳的热阻 r δ---衰减电阻 r(th)---瞬态电阻 Ta---环境温度 Tc---壳温 td---延迟时间 tf---下降时间 tfr---正向恢复时间 tg---电路换向关断时间 tgt---门极控制极开通时间 Tj---结温 Tjm---最高结温 ton---开通时间 toff---关断时间 tr---上升时间 trr---反向恢复时间 ts---存储时间
tstg---温度补偿二极管的贮成温度 a---温度系数 λp---发光峰值波长 △ λ---光谱半宽度
η---单结晶体管分压比或效率 VB---反向峰值击穿电压 Vc---整流输入电压 VB2B1---基极间电压
VBE10---发射极与第一基极反向电压 VEB---饱和压降
VFM---最大正向压降(正向峰值电压) VF---正向压降(正向直流电压) △VF---正向压降差 VDRM---断态重复峰值电压 VGT---门极触发电压 VGD---门极不触发电压 VGFM---门极正向峰值电压 VGRM---门极反向峰值电压 VF(AV)---正向平均电压
Vo---交流输入电压 VOM---最大输出平均电压 Vop---工作电压 Vn---中心电压 Vp---峰点电压
VR---反向工作电压(反向直流电压) VRM---反向峰值电压(最高测试电压) V(BR)---击穿电压 Vth---阀电压(门限电压)
VRRM---反向重复峰值电压(反向浪涌电压) VRWM---反向工作峰值电压 V v---谷点电压 Vz---稳定电压
△Vz---稳压范围电压增量
Vs---通向电压(信号电压)或稳流管稳定电流电压 av---电压温度系数
Vk---膝点电压(稳流二极管) VL ---极限电压
三、场效应管参数符号意义 Cds---漏-源电容 Cdu---漏-衬底电容 Cgd---栅-源电容 Cgs---漏-源电容
Ciss---栅短路共源输入电容 Coss---栅短路共源输出电容 Crss---栅短路共源反向传输电容 D---占空比(占空系数,外电路参数) di/dt---电流上升率(外电路参数) dv/dt---电压上升率(外电路参数) ID---漏极电流(直流) IDM---漏极脉冲电流 ID(on)---通态漏极电流
IDQ---静态漏极电流(射频功率管) IDS---漏源电流 IDSM---最大漏源电流
IDSS---栅-源短路时,漏极电流
IDS(sat)---沟道饱和电流(漏源饱和电流) IG---栅极电流(直流) IGF---正向栅电流 IGR---反向栅电流
IGDO---源极开路时,截止栅电流 IGSO---漏极开路时,截止栅电流 IGM---栅极脉冲电流 IGP---栅极峰值电流
IF---二极管正向电流
IGSS---漏极短路时截止栅电流 IDSS1---对管第一管漏源饱和电流 IDSS2---对管第二管漏源饱和电流 Iu---衬底电流
Ipr---电流脉冲峰值(外电路参数) gfs---正向跨导 Gp---功率增益
Gps---共源极中和高频功率增益 GpG---共栅极中和高频功率增益 GPD---共漏极中和高频功率增益 ggd---栅漏电导 gds---漏源电导 K---失调电压温度系数 Ku---传输系数
L---负载电感(外电路参数) LD---漏极电感 Ls---源极电感 rDS---漏源电阻 rDS(on)---漏源通态电阻 rDS(of)---漏源断态电阻 rGD---栅漏电阻 rGS---栅源电阻
Rg---栅极外接电阻(外电路参数) RL---负载电阻(外电路参数) R(th)jc---结壳热阻 R(th)ja---结环热阻 PD---漏极耗散功率
PDM---漏极最大允许耗散功率 PIN--输入功率 POUT---输出功率
PPK---脉冲功率峰值(外电路参数) to(on)---开通延迟时间 td(off)---关断延迟时间 ti---上升时间 ton---开通时间 toff---关断时间 tf---下降时间 trr---反向恢复时间 Tj---结温
Tjm---最大允许结温 Ta---环境温度 Tc---管壳温度 Tstg---贮成温度
VDS---漏源电压(直流) VGS---栅源电压(直流) VGSF--正向栅源电压(直流) VGSR---反向栅源电压(直流)
VDD---漏极(直流)电源电压(外电路参数) VGG---栅极(直流)电源电压(外电路参数) Vss---源极(直流)电源电压(外电路参数) VGS(th)---开启电压或阀电压 V(BR)DSS---漏源击穿电压
V(BR)GSS---漏源短路时栅源击穿电压 VDS(on)---漏源通态电压 VDS(sat)---漏源饱和电压 VGD---栅漏电压(直流) Vsu---源衬底电压(直流) VDu---漏衬底电压(直流) VGu---栅衬底电压(直流) Zo---驱动源内阻
η---漏极效率(射频功率管) Vn---噪声电压
aID---漏极电流温度系数 ards---漏源电阻温度系数
电子元器件基础知识(5)——继电器 一、继电器的工作原理和特性
继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。 1、电磁继电器的工作原理和特性
电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 2、热敏干簧继电器的工作原理和特性
热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。 3、固态继电器(SSR)的工作原理和特性
固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。
固态继电器按负载电源类型可分为交流型和直流型。按开关型式可分为常开型和常闭型。按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多。. 二、继电器主要产品技术参数 1、额定工作电压
是指继电器正常工作时线圈所需要的电压。根据继电器的型号不同,可以是交流电压,也可以是直流电压。 2、直流电阻
是指继电器中线圈的直流电阻,可以通过万能表测量。 3、吸合电流
是指继电器能够产生吸合动作的最小电流。在正常使用时,给定的电流必须略大于吸合电流,这样继电器才能稳定地工作。而对于线圈所加的工作电压,一般不要超过额定工作电压的1.5倍,否则会产生较大的电流而把线圈烧毁。 4、释放电流
是指继电器产生释放动作的最大电流。当继电器吸合状态的电流减小到一定程度时,继电器就会恢复到未通电的释放状态。这时的电流远远小于吸合电流。 5、触点切换电压和电流
是指继电器允许加载的电压和电流。它决定了继电器能控制电压和电流的大小,使用时不能超过此值,否则很容易损坏继电器的触点。 三、继电器测试 1、测触点电阻
用万能表的电阻档,测量常闭触点与动点电阻,其阻值应为0;而常开触点与动点的阻值就为无穷大。由此可以区别出那个是常闭触点,那个是常开触点。 2、测线圈电阻
可用万能表R×10Ω档测量继电器线圈的阻值,从而判断该线圈是否存在着开路现象。 3、测量吸合电压和吸合电流
找来可调稳压电源和电流表,给继电器输入一组电压,且在供电回路中串入电流表进行监测。慢慢调高电源电压,听到继电器吸合声时,记下该吸合电压和吸合电流。为求准确,可以试多几次而求平均值。 4、测量释放电压和释放电流
也是像上述那样连接测试,当继电器发生吸合后,再逐渐降低供电电压,当听到继电器再次发生释放声音时,记下此时的电压和电流,亦可尝试多几次而取得平均的释放电压和释放电流。一般情况下,继电器的释放电压约在吸合电压的10~50%,如果释放电压太小(小于1/10的吸合电压),则不能正常使用了,这样会对电路的稳定性造成威胁,工作不可靠。 四、继电器的电符号和触点形式
继电器线圈在电路中用一个长方框符号表示,如果继电器有两个线圈,就画两个并列的长方框。同时在长方框内或长方框旁标上继电器的文字符号“J”。继电器的触点有两种表示方法:一种是把它们直接画在长方框一侧,这种表示法较为直观。另一种是按照电路连接的需要,把各个触点分别画到各自的控制电路中,通常在同一继电器的触点与线圈旁分别标注上相同的文字符号,并将触点组编上号码,以示区别。继电器的触点有三种基本形式:
1.动合型(H型)线圈不通电时两触点是断开的,通电后,两个触点就闭合。以合字的拼音字头“H”表示。 2.动断型(D型)线圈不通电时两触点是闭合的,通电后两个触点就断开。用断字的拼音字头“D”表示。 3.转换型(Z型)这是触点组型。这种触点组共有三个触点,即中间是动触点,上下各一个静触点。线圈不
通电时,动触点和其中一个静触点断开和另一个闭合,线圈通电后,动触点就移动,使原来断开的成闭合,原来闭合的成断开状态,达到转换的目的。这样的触点组称为转换触点。用“转”字的拼音字头“z”表示。 五、继电器的选用
1.先了解必要的条件:①控制电路的电源电压,能提供的最大电流;②被控制电路中的电压和电流;③被控电路需要几组、什么形式的触点。选用继电器时,一般控制电路的电源电压可作为选用的依据。控制电路应能给继电器提供足够的工作电流,否则继电器吸合是不稳定的。
2.查阅有关资料确定使用条件后,可查找相关资料,找出需要的继电器的型号和规格号。若手头已有继电器,可依据资料核对是否可以利用。最后考虑尺寸是否合适。
3.注意器具的容积。若是用于一般用电器,除考虑机箱容积外,小型继电器主要考虑电路板安装布局。对于小型电器,如玩具、遥控装置则应选用超小型继电器产品。