renWin->SetSize( 300, 300 );
// Here is where we setup the observer, we do a new and ren1 will // eventually free the observer
vtkMyCallback *mo1 = vtkMyCallback::New(); ren1->AddObserver(vtkCommand::StartEvent,mo1); mo1->Delete(); //
// now we loop over 360 degrees and render the cone each time // int i;
for (i = 0; i < 360; ++i) {
// render the image renWin->Render();
// rotate the active camera by one degree ren1->GetActiveCamera()->Azimuth( 1 ); } //
// Free up any objects we created //
cone->Delete(); coneMapper->Delete(); coneActor->Delete(); ren1->Delete(); renWin->Delete();
return 0; }
3、一个圆锥两个renderer在同一个窗口下显示
#include \ #include \ #include \ #include \ #include \ #include \
int main() { //
// Next we create an instance of vtkConeSource and set some of its // properties. The instance of vtkConeSource \
// visualization pipeline (it is a source process object); it produces data // (output type is vtkPolyData) which other filters may process. //
vtkConeSource *cone = vtkConeSource::New(); cone->SetHeight( 3.0 ); cone->SetRadius( 1.0 ); cone->SetResolution( 10 ); //
// In this example we terminate the pipeline with a mapper process object. // (Intermediate filters such as vtkShrinkPolyData could be inserted in // between the source and the mapper.) We create an instance of
// vtkPolyDataMapper to map the polygonal data into graphics primitives. We // connect the output of the cone souece to the input of this mapper. //
vtkPolyDataMapper *coneMapper = vtkPolyDataMapper::New(); coneMapper->SetInputConnection( cone->GetOutputPort() ); //
// Create an actor to represent the cone. The actor orchestrates rendering // of the mapper's graphics primitives. An actor also refers to properties // via a vtkProperty instance, and includes an internal transformation // matrix. We set this actor's mapper to be coneMapper which we created // above. //
vtkActor *coneActor = vtkActor::New(); coneActor->SetMapper( coneMapper ); //
// Create two renderers and assign actors to them. A renderer renders into // a viewport within the vtkRenderWindow. It is part or all of a window on // the screen and it is responsible for drawing the actors it has. We also // set the background color here. In this example we are adding the same // actor to two different renderers; it is okay to add different actors to // different renderers as well. //
vtkRenderer *ren1= vtkRenderer::New(); ren1->AddActor( coneActor );
ren1->SetBackground( 0.1, 0.2, 0.4 ); ren1->SetViewport(0.0, 0.0, 0.5, 1.0);
vtkRenderer *ren2= vtkRenderer::New(); ren2->AddActor( coneActor );
ren2->SetBackground( 0.2, 0.3, 0.5 ); ren2->SetViewport(0.5, 0.0, 1.0, 1.0); //
// Finally we create the render window which will show up on the screen. // We put our renderer into the render window using AddRenderer. We also // set the size to be 300 pixels by 300. //
vtkRenderWindow *renWin = vtkRenderWindow::New(); renWin->AddRenderer( ren1 ); renWin->AddRenderer( ren2 ); renWin->SetSize( 600, 300 ); //
// Make one view 90 degrees from other. //
ren1->ResetCamera();
ren1->GetActiveCamera()->Azimuth(90); //
// Now we loop over 360 degreeees and render the cone each time. // int i;
for (i = 0; i < 360; ++i) {
// render the image renWin->Render();
// rotate the active camera by one degree ren1->GetActiveCamera()->Azimuth( 1 ); ren2->GetActiveCamera()->Azimuth( 1 ); } //
// Free up any objects we created. All instances in VTK are deleted by // using the Delete() method. //
cone->Delete(); coneMapper->Delete(); coneActor->Delete(); ren1->Delete(); ren2->Delete(); renWin->Delete();
return 0; }
4、一个圆锥两个renderer在同一个窗口下显示
Cone4
#include \ #include \ #include \ #include \ #include \ #include \ #include \
int main() { //
// Next we create an instance of vtkConeSource and set some of its // properties. The instance of vtkConeSource \
// visualization pipeline (it is a source process object); it produces data // (output type is vtkPolyData) which other filters may process. //
vtkConeSource *cone = vtkConeSource::New(); cone->SetHeight( 3.0 ); cone->SetRadius( 1.0 ); cone->SetResolution( 10 ); //
// In this example we terminate the pipeline with a mapper process object. // (Intermediate filters such as vtkShrinkPolyData could be inserted in // between the source and the mapper.) We create an instance of
// vtkPolyDataMapper to map the polygonal data into graphics primitives. We