毕业设计论文四轴飞行器定速巡航系统设计 - 图文(2)

2019-04-21 20:01

┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊

长 春 大 学 毕业设计(论文)纸

图2-2 四周飞行器电气连接图

硬件清单如表2-1

表2-1 四轴飞行器硬件清单

共 17 页 第 6 页

┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊

长 春 大 学 毕业设计(论文)纸

2.2软件构成

2.2.1.上位机

上位机是针对飞行器的需要,在Qt SDK上写的一个桌面程序,可以通过串口与飞行器相连,具备传感器校正、显示姿态、测试电机、查看电量、设置参数等功能。

2.2.2. 下位机

下位机为飞行器上MCU里的程序,主要有三个任务:计算姿态、接受命令和输出控制。下位机直接控制电机功率,飞行器的安全性、稳定性、可操纵性都取决于它。下位机的三个任务实时性都要求很高,所以计算姿态的频率设为200Hz,输出控制的频率为100Hz,而接收到命令后,立即处理。因为电子调速器接受的信号为PWM信号,高电平时间在1ms~2ms之3.1.坐标系统间,所以控制信号输出频率也不能太高。

3.飞行器原理

3.1.坐标系统

飞行器涉及两个空间直角坐标系统:地理坐标系和机体坐标系。地理坐标系是固连在地面的坐标系,机体坐标系是固连在飞行器上的坐标系。四轴飞行器运动范围小,可以不考虑地面曲率,且假设地面为惯性系。地理坐标系采用“东北天坐标系”,X轴指向东,为方便罗盘的使用,Y轴指向地磁北,Z轴指向天顶。机体坐标系原点在飞行器中心,xy 平面为电机所在平面,电机分布在{|x|=|y|,z=0}的直线上,第一象限的电机带正桨,z轴指向飞行器上方。如图3-1所示。

共 17 页 第 7 页

┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊

长 春 大 学 毕业设计(论文)纸

图3-1 地理坐标系和机体坐标系图示(坐标系方向重合时)

3.2. 姿态的表示和运算

飞行器的姿态,是指飞行器的指向,一般用三个姿态角表示,包括偏航角(yaw)、俯仰角(pitch)和滚转角(roll)。更深一层,姿态其实是一个旋转变换,表示机体坐标系与地理坐标系的旋转关系,这里定义姿态为机体坐标系向地理坐标系的转换。旋转变换有多种表示方式,包括变换矩阵、姿态角、转轴转角、四元数等。

在本文中,矩阵用加粗大写字母表示,如EAR,左上标和左下标表示从机体坐标系(Aircraft)变换到地理坐标系(Earth);四元数用加粗小写字母表示,如EAq,上下标意义与变换矩阵一样;向量用带箭头加粗小写字母表示,如Av,左上标A表示向量的值是在机体坐标系的坐标值。

因为姿态实质是一个旋转变换,根据刚体有限转动的欧拉定理,旋转变换是可以串联的,所以一个姿态可以经过一个旋转变换,变成另一个姿态。类比点和向量的概念,姿态相当于点,旋转相当于向量,点可以通过加向量,变成另一个点。如果用矩阵表示旋转,旋转的串联由矩阵乘法来实现。如果用四元数表示旋转,则由

四元数的乘法来实现旋转串联。

共 17 页 第 8 页

┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊

长 春 大 学 毕业设计(论文)纸

用四元数来表示旋转,组合旋转时比用其他方法运算量更少,所以无论在计算机图形学、飞行器控制等涉及刚体旋转的领域,四元数都有举足轻重的地位[9]。飞行器的姿态计算是围绕姿态四元数进行的,下面简要介绍一下四元数的运算。

一个四元数由4个实数组成。

q=[wq xq yq zq]T

(3-1)

规范化的四元数可以表示旋转,见(3-2)式,单位向[xw yw zw]T为旋转的转轴。

wq=cos(@/2)

xq=xw *sin(@/2)

yq=yw *sin(@/2) (3-2)

zq=zw *sin(@/2)过程见(3-3)式。

wr = wpwq - xpxq - ypyq - zpzq

记四元数乘法的符号为。四元数乘法跟矩阵一样,有结合律,没有交换律。运算

xr= wpxq + xpwq + ypzq - zpyq

yr= wpyq - xpzq + ypzq + zpxq (3-3)

zr= wpzq + xpyq - ypxq + zpwq

3.3.动力学原理

螺旋桨旋转时,把空气对螺旋桨的压力在轴向和侧向两个方向分解,得到两种力学效应:推力和转矩。当四轴飞行器悬停时,合外力为0,螺旋桨的推力用于抵消重力,转矩则由成对的正桨反桨抵消。当飞行器运动时,因为推力只能沿轴向,所以只能通过倾斜姿态来提供水平的动力,控制运动由控制姿态来间接实现。

假设四轴为刚体,根据质点系动量矩定理,角速度和角加速度由外力矩决定[10],通过控制四个螺旋桨,可以产生需要的力矩。首先对螺旋桨编号:第一象限的为0号,然后逆时针依次递增,如图(3-1)。同步增加0号和1号、减小2号和3号桨的功率,可以在不改变推力的情况下,提供x轴的力矩;同步增加1号和2号、减小0

共 17 页 第 9 页

┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊

长 春 大 学 毕业设计(论文)纸

号和3号桨的功率,可以在不改变推力的情况下,提供y轴的力矩;同步增加1号和3号、减小0号和2号桨的功率,可以在不改变推力的情况下,提供z轴的力矩。以上“增加”和“减小”只是表明变化的方向,可以增加负数和减小负数,提供的力矩就沿对应轴的负方向了。把三个轴的力矩叠加起来,就得到各螺旋桨功率变化与提供的力矩的对应关系,可以用一个矩阵等式表示,见(3-5)

T是螺旋桨的功率变

化量,为4×1矩阵,每行分别对应0到3号螺旋桨;向量m是力矩,为3×1矩阵。mx、my和mz是各轴的力矩系数,用于把力矩转换成功率变化量,具体数值与电机力矩特性、电机安装位置等有关。

4.姿态测量

获取当前姿态是控制飞行器平稳飞行的基础,姿态的测量要求低噪声、高输出频率,当采用陀螺仪等需要积分的传感器时,还需要考虑积分发散等问题。近年来MEMS传感器越来越成熟、应用广泛,成为低成本姿态测量的首选器件[11],因此该项目使用的传感器全部都是MEMS传感器,在使用传感器的值进行姿态计算之前,有必要校正传感器。

4.1.传感器校正

由于实验条件限制,传感器的校正只有两项,分别对应两种类型的传感器:陀螺仪——静止时0输出的传感器、加速度计与罗盘——测量某向量场强度的传感器。

4.1.1.陀螺仪

对于陀螺仪等静止时0输出的传感器,可以很方便地校正零偏。把传感器固定好,这时对输出值Xf求平均,得到的A即为零偏,实际使用时,把测得的值减去零偏,得到的值就是校正值。实际应用的公式如(4-2),A为零偏值,3×1矩阵,单位:LSB;Yi为校正好的值,3×1矩阵,单位:rad/s;Xi为测量原始值,单位:LSB; gain为转换系数,单位:(rad/s)/LSB,由传感器的数据手册给出。

4.1.2.加速度计和电子罗盘

加速度计和罗盘都是测量所在点的某个向量场的值的传感器,静态时加速度计测的是等效重力加速度场,电子罗盘测的是地磁场。下面仅介绍加速度计的校正,罗盘的校正同理。

共 17 页 第 10 页


毕业设计论文四轴飞行器定速巡航系统设计 - 图文(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:汽修厂安全生产隐患自查自纠汇报材料

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: