基于51单片机的智能家居控制系统设计 - 图文(3)

2019-04-21 23:11

图3.1 DS12C887引脚图

SQW:方波输出脚,当供电电压VCC大于4.25V时,SQW脚可进行方波输出,此时用户可以通过对控制寄存器编程来得到13种方波信号的输出。

AD0~AD7:复用地址数据总线,该总线采用时分复用技术,在总线周期的前半部分,出现在AD0~AD7上的是地址信息,可用以选通DS12C887内的RAM,总线周期的后半部分出现在AD0~AD7上的数据信息。

AS:地址选通输入脚,在进行读写操作时,AS的上升沿将AD0~AD7上出现的地址信息锁存到DS12C887上,而下一个下降沿清除AD0~AD7上的地址信息,不论是否有效,DS12C887都将执行该操作。

DS/RD:数据选择或读输入脚,该引脚有两种工作模式,当MOT接VCC时,选用Motorola工作模式,在这种工作模式中,每个总线周期的后一部分的DS为高电平,被称为数据选通。在读操作中,DS的上升沿使DS12C887将内部数据送往总线AD0~AD7上,以供外部读取。在写操作中,DS的下降沿将使总线AD0~AD7上的数据锁存在DS12C887中;当MOT接GND时,选用Intel工作模式,在该模式中,该引脚是读允许输入脚,即Read Enable。

R/W:读/写输入端,该管脚也有2种工作模式,当MOT接VCC时,R/W工作在Motorola模式。此时,该引脚的作用是区分进行的是读操作还是写操作,当R/W为高电平时为读操作,R/W为低电平时为写操作;当MOT接GND时,该脚工作在Intel模式,此时该作为写允许输入,即Write Enable。

CS:片选输入,低电平有效。

IRQ:中断请求输入,低电平有效,该脚有效对DS12C887内的时钟、日历和RAM中的内容没有任何影响,仅对内部的控制寄存器有影响,在典型的应用中,RESET可以

6

直接接VCC,这样可以保证DS12C887在掉电时,其内部控制寄存器不受影响。

在DS12C887内有11字节RAM用来存储时间信息,4字节用来存储控制信息,其具体的地址及取值如表3.1所列。

由表3.1可以看出:DS12C887内部有控制寄存器的A-B等4个控制寄存器,用户都可以在任何时候对其进行访问以对DS12C887进行控制操作[7]。

表3.1 DS12C887的存储功能

取值范围十地址 功能 进制数 0 1 2 3 秒 秒闹钟 分 分闹钟 0--59 0--59 0--59 0--59 二进制 00--3B 00--3B 00--3B 00--3B 01--0C AM 12小时模式 4 24小时模式 0--23 1--12 81--8C PM 00--17 01--0C AM 时闹钟,12小时制 5 时闹钟,24小时制 6 7 8 9 10 11 12 13 50 星期几(星期天=1) 日 月 年 控制寄存器A 控制寄存器B 控制寄存器C 控制寄存器D 世纪 0--23 1--7 1--31 1--12 0--99 0--99 NA 1--12 81--8C PM 00--17 01--07 01--1F 01--0C 00--63 81--92 PM 00--23 01--07 01--31 01--12 00--99 19,20 81--92 PM 00--23 01--12 AM BCD码 00--59 00--59 00--59 00--59 01--12 AM 取值范围

7

3.1.3 DS18B20

DSl8B20数字温度计提供9位(二进制)温度读数,指示器件的温度信息经过单线接口送入DSl8B20或从DSl8B20送出,因此从主机CPU到DSl8B20仅需一条线(和地线)。 DSl8B20的电源可以由数据线本身提供而不需要外部电源。因为每一个DSl8B20在出厂时已经给定了唯一的序号,因此任意多个DSl8B20可以存放在同一条单线总线上。这允许在许多不同的地方放置温度敏感器件。DSl8B20的测量范围从-55℃到+125℃,增量值为0.5℃,可在ls(典型值)内把温度变换成数字[8]。

每一个DSl8B20包括一个唯一的64位长的序号,该序号值存放在DSl8B20内部的ROM(只读存贮器)中。开始8位是产品类型编码(DSl8B20编码均为10H)。接着的48位是每个器件唯一的序号。最后8位是前面56位的CRC(循环冗余校验)码。DSl8B20中还有用于贮存测得的温度值的两个8位存贮器RAM,编号为0号和1号。 1号存贮器存放温度值的符号,如果温度为负(℃),则1号存贮器8位全为1,否则全为0。0号存贮器用于存放温度值的补码,LSB(最低位)的“1”表示0.5℃。将存贮器中的二进制数求补再转换成十进制数并除以2就得到被测温度值(-55℃——125℃)。DSl8B20的引脚如图3.2所示。每只DS18B20都可以设置成两种供电方式,即数据总线供电方式和外部供电方式。采取数据总线供电方式可以节省一根导线,但完成温度测量的时间较长;采取外部供电方式则多用一根导线,但测量速度较快[9]。

图3.2 DS18B20引脚图

DS18B20电路图如图3.3所示:

8

图3.3 DS18B20电路图

3.1.4 74HC138

74HC138是一款高速CMOS器件,74HC138引脚兼容低功耗肖特基TTL(LSTTL)系列。

74HC138译码器可接受3位二进制加权地址输入(A0, A1和A2),并当使能时,提供8个互斥的低有效输出(Y0至Y7)。74HC138特有3个使能输入端:两个低有效(E1和E2)和一个高有效(E3)。除非E1和E2置低且E3置高,否则74HC138将保持所有输出为高。利用这种复合使能特性,仅需4片74HC138芯片和1个反相器,即可轻松实现并行扩展,组合成为一个1-32(5线到32线)译码器。任选一个低有效使能输入端作为数据输入,而把其余的使能输入端作为选通端,则74HC138亦可充当一个8输出多路分配器,未使用的使能输入端必须保持绑定在各自合适的高有效或低有效状态[10]。

74HC138与74HC238逻辑功能一致,只不过74HC138为反相输出。 74HC138的功能表如表3.2所示:

表3.2 74HC138功能表

9

74HC138引脚图如图3.4所示:

图3.4 74HC138引脚图

3.1.5 74HC595

74HC595是硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。74HC595是具有8位移位寄存器和一个存储器,三态输出功能。 移位寄存器和存储器是分别的时钟。数据在SHcp的上升沿输入到移位寄存器中,在STcp的上升沿输入到存储寄存器中去。如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线[11]。

8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。三态。 将串行输入的8位数字,转变为并行输出的8位数字,例如控制一个8位数码管,将不会有闪烁。

特点:8位串行输入/8位串行或并行输出;存储状态寄存器,三种状态;输出寄存器(三态输出:就是具有高电平、低电平和高阻抗三种输出状态的门电路。)可以直接清除100MHz的移位频率[12]。

引脚说明:

Q0--Q7:8位并行数据输出,其中Q0为第15脚。 GND:第8脚,地。

Q7’:第9脚,串行数据输出。 MR:第10脚,主复位(低电平)。 SHCP:第11脚,移位寄存器时钟输入。 STCP:第12脚,存储寄存器时钟输入。

10


基于51单片机的智能家居控制系统设计 - 图文(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:保险学论文

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: