风橱内操作。 (97)5-溴-4-氯-3-吲哚-β-D-半乳糖苷:对眼睛和皮肤有毒性。皮肤吸收可造成损伤。戴好手套和护目镜。 (98)5-溴-4-氯-3-吲哚-磷酸酯:有毒性。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。 (99)5-溴-2’-脱氧脲苷;为致畸胎剂。吸入,摄入,皮肤吸收可造成损伤。有刺激性。戴好手套和护目镜。在通风橱内操作。 (100)溴乙啡啶:为一种强致突变剂,有毒性。避免吸入粉尘。操作含此染料的溶液时,戴上手套。 (101)血(人类)和血产品和爱普斯坦病毒:其中可能含有隐藏的传染性物质,如乙型肝炎病毒、HIV,可能造成实验上室传染。戴一次性手套,使用吸枪式吸管,在生物安全橱中、操作,防止形成悬浮和污染。污染的塑料器皿在丢弃前要高压处理;污染的液体高压处理或丢弃前用漂白粉处理至少30min。 (102)N,N’-亚甲基丙烯酰胺:为毒药,作用于中枢神经系统。吸入,摄入,皮肤吸收可造成损伤。有刺激性。戴好手套和护目镜。 (103)亚精胺:有腐蚀性。吸入,摄入,皮肤吸收可造成损伤。有刺激性。戴好手套和护目镜。在通风橱内操作。 (104)亚铁氰化钾:吸入,摄入,皮肤吸收可造成损伤。有刺激性。戴好手套和护目镜。在通风橱内相当谨慎地操作。远离强酸。 (105)盐酸:有挥发性。吸入,摄入,皮肤吸收可致命。对皮肤、眼睛、黏膜和上呼吸道有极大损害。戴好手套和护目镜。在通风橱内操作。 (106)盐酸胍:刺激黏膜、上呼吸道、皮肤和眼睛。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。 (107)盐酸胍盐:见盐酸胍。 (108)乙醇:吸入,摄入,皮肤吸收可造成损伤。
戴好手套和护目镜。 (109)乙基亚硝基脲:见N-乙基-N-亚硝基脲 (110)N-乙基-N-亚硝基脲(ENU):有致癌性,为潜在的突变诱导剂。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。用1ml/LNaOH溶液清洗所有接触过ENU的物品。 (111)乙酸铵:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。 (112)乙醇胺:有毒性。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。具有高腐蚀性,并可与酸发生强烈反应。 (113)乙酸:使用时要非常小心。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。 (114)乙酸钠:见乙酸。 (115)乙酸铀酰:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。 (116)异丙基-β-D-硫代半乳糖苷(IPTG):吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。 (117)异丁烯酸酯:有毒。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。不要吸入其气体。 (118)异硫氰酸胍盐:见硫氰酸胍盐。 (119)抑肽酶:吸入,摄入,皮肤吸收可造成损伤还可导致过敏反应。暴露其中可引起胃肠反应,肌肉疼痛,血压改变或支气管痉挛。戴好手套和护目镜。不要吸入粉尘,必须在通风橱内操作。 (120)月桂酰基氨酸钠:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。不要吸入粉尘。
[ Last edited by gauss_ren on 2008-8-15 at 11:31 ]
作者:gauss_ren
有易洁纳米涂层的玻璃:排水、排油和排脏;由于水自动结成水珠,所以脏物难以粘附在表面,这可延长物品使用周期。有纳米涂层的汽车挡风玻璃,当雨水落在涂层玻璃上时,就像雨水落到荷叶上,形成一串串水珠,尤其在车辆高速行驶过程中,水珠会被迅速吹离玻璃,大大增加了行车的安全性,也可大大减少雨刮器的使用次数……?纳米?,在很多领域都可以给我们带来意想不到的惊喜。
自从有了纳米概念的引入,科研者们就在想着不同的办法让?纳米?能够为百姓带来更多福音。然而,任何事物都是利弊相长,纳米技术给我们的生活带来便利的同时,其存在的潜在危险也不容人们忽视。
空气中?纳米?在增多
最近研究表明,城市空气中的超细颗粒物对居民的发病率和死亡率的影响,比看得见的大颗粒物要严重得多。在欧洲的研究结果显示,近十年来城市里大颗粒物浓度在下降,但是超细颗粒物浓度却在上升。这可能与大量使用各种涂料及各种产品涂层颗粒的不断脱落释放等有关。人们还提出了原因不明疾病与空气里纳米颗粒的影响及传播的关联问题。
释放到空气中的纳米颗粒物,其表面吸附物质与尺寸大小都随时间不断在动态改变。目前只有从结构明确、成分明确、剂量明确的人造纳米颗粒入手研究,首先建立具有共性的纳米生物效应模型,分析纳米颗
粒在生物体内的行为以及不同成分的协同效应产生的生物安全性问题。
由于纳米颗粒仅为细胞的千分之一,因此可能比较容易进入细胞。国家纳米科学中心———高能物理研究所纳米生物效应与安全性联合实验室主任、?人造纳米材料的生物安全性研究及解决方案探索?973项目首席科学家赵宇亮说:?纳米颗粒可能会产生的负面影响表现为:1.对人们心理的影响,由于人们对于‘纳米’的不了解,所以无法预知其可能产生的后果。2.纳米颗粒性质和常规物质差别大,进入身体可能会引起不同的生物反应,作用于生物体。3.直接用于人体纳米药物,更需要进行大量的研究。?
科学家关注?纳米?
早在3年前,就有几份报告让人们对?纳米?这个极具发展前景的新兴技术感到迷惑。在2003年美国化学学会年会上,有3个研究小组发表了纳米材料具有特殊毒性的报告。
也许大部分纳米材料对人体无害,但是,由于它们比细胞还小上千倍,某些纳米颗粒也许可能导致意外的毒性,特别是那些与人体和生命直接相关的材料。莱斯大学科学家进行的一项很有前景的研究表明,有可能重新设计纳米颗粒,使其制造起来毒性较少。为此,赵宇亮解释说:?对于可控性方面,现在人们有很多办法控制纳米反应的性质,通过表
面化学修饰———改变纳米颗粒表面的性能。换句话说,通过改变纳米表面性质来控制它的性能、减少它的毒性,是可行的。莱斯大学科学家通过化学修饰重新设计纳米颗粒,将毒性降低了10的6次方。?
中科院高能所国家纳米科学中心的?纳米生物效应与纳米安全性联合实验室?在研究碳纳米材料n颗粒在小鼠体内的行为时发现,它们在小鼠血管内诱发严重的血栓。但是,当对这些纳米颗粒进行表面修饰以后,它不仅不再诱发血栓,反而大大增强小鼠免疫力,仅100万分之一摩尔的剂量,比目前临床使用的抗肿瘤药物顺铂具有更加显著的抑制肝肿瘤生长的效果,而且无毒性。该结果引起很大的国际反响,美国和挪威的专家评论:?肿瘤的无毒治疗是人类的梦想,这项发现为实现这个梦想提供了希望。?
?纳米?探索的春天
在今年召开的全国科学技术大会上,纳米研究被列为《国家中长期科学和技术发展规划纲要(2006—2020年)》重大科学研究计划,并将重点研究纳米材料的可控制备、自组装和功能化,纳米材料的结构、优异特性及其调控机制,纳加工与集成原理,概念性和原理性纳器件,纳电子学,纳米生物学和纳米医学,分子聚集体和生物分子的光、电、磁学性质及信息传递,纳米材料和纳米技术在能源、环境、信息、医药等