安徽工程大学机电学院毕业设计
第3章 试验台方案设计
无论任何车辆的制动性能,首先必须满足安全性能的要求。作为汽车三大功能(行驶,制动和转向)之一的制动性能,也是汽车安全性能中的重要指标之一。整车再生制动系统的搭建及试验成本较高,而简易的再生制动试验台能够节约再生制动系统的开发成本, 缩短开发周期。 3.1实验台整体布置
再生制动理论主要是研究回收制动能量方法、回收制动能量的效率、驱动电动机与功率转换器的控制技术、再生制动控制策略、机电复合制动的协调等。模拟试验台采用模块化设计方法,如图3所示,包括制动踏板输入模块、制动能量转换模块、惯性模块、道路阻力模拟模块(负载电动机)、常规制动模块、能量储存管理模块、测控系统模块等。
试验台通过机械和电气连接,主要完成把发动机的动能和蓄电池的电能转换为飞轮的动能和把飞轮的动能转换为蓄电池的电能,由此模拟能量回收过程。其中,通过CVT无级变速器在启动时给起动机减速,保证飞轮在合适的转速下工作;在减速制动时,打开离合器,中断动力装置,由于惯性,飞轮旋转,再次通过CVT调节,使发电机增速,保证飞轮的动能一直能够被利用发电。发电机产生的电能通过变化器存储在蓄电池中。具体布置图如下图所示:
图3-1 再生制动系统方案布置图
7
周勐:混联式电动汽车再生制动系统实验台设计
金属带式无级变速器(CVT)的速比是在设计范围内连续变化的,此过程由电控单元ECU以及控制系统的测试、执行机构自动完成。通过电子控制技术,将电机的驱动源和CVT结合在一起实现汽车动力传动系统的综合控制,能够使动力源与传动系统形成优势互补。
3.2试验台主要装置
试验台主要装置包括无级变速装置、飞轮装置、电机、蓄电池、ECU、功率转换器等。 3.2.1无级变速器
CVT技术的发展,已经有了一百多年的历史。德国奔驰公司是在汽车上采用CVT技术的鼻祖,早在1886年就将V型橡胶带式CVT安装在该公司生产的汽油机汽车上。1958年,荷兰的DAF公司H.Van Doorne博士研制成功了名为Variomatic的双V型橡胶带式CVT,并装备于DAF公司制造的Daffodil轿车上,其销量超过了100万辆。1997年上半年,日本日产公司开发了使用在2.0L汽车上的CVT。在此基础上,日产公司在1998年开发了一种为中型轿车设计的包含一个手动换档模式的CVT。新型CVT采用一个最新研制的高强度宽钢带和一个高液压控制系统。通过采用这些先进的技术来获得较大的转矩能力,日产公司研究开发CVT的电子控制技术,传动比的改变实行全档电子控制,汽车在下坡时可以一直根据车速控制发动机制动,而且在湿滑路面上能够平顺地增加速比来防止打滑。
德国博世的电子式CVT控制系统是基于用传感器和执行器单元控制基础上的电子/液力模块。博世公司已经将独立部件、执行器、传感器和变速器换档ECU组成一个单独的模块,变速器制造商只需增加一个集成控制单元。
CVT的主要结构和工作原理如上图所示,该系统主要包括主动轮组、从动轮组、金属带和液压泵等基本部件。金属带由两束金属环和几百个金属片构成。主动轮组和从动轮组都由可动盘和固定盘组成,与油缸靠近的一侧带轮可以在轴上滑动,另一侧则固定。可动盘与固定盘都是锥面结构,它们的锥面形成V型槽来与V型金属传动带啮合。发动机输出轴输出的动力首先传递到CVT的主动轮,然后通过V型传动带传递到从动轮,最后经减速器、差速器传递给车轮来驱动汽车。工作时通过主动轮与从动轮的可动盘作轴向移动来改变主动轮、从动轮锥面与V型传动带啮合的工作半径,从而改变传动比。可动轮的轴向移动是根据汽车的使用要求,通过液压控制系统进行连续的调节,从而实现无级变速。
8
安徽工程大学机电学院毕业设计
图3-2 CVT控制系统方案图 3.2.2飞轮
飞轮是具有适当转动惯量、起贮存和释放动能作用的转动构件。安装在机器回转轴上的具有较大转动惯量的轮状蓄能器。当机器转速增高时,飞轮的动能增加,把能量贮蓄起来;当机器转速降低时,飞轮动能减少,把能量释放出来。飞轮可以用来减少机械运转过程的速度波动。一般由飞轮、齿圈、离合器定位销、轴承等组成,部分产品轴承用花键代替。本试验台中飞轮主要功能是模拟汽车在实际道路行驶中的惯量,因此选用的飞轮的惯量应当与选择的汽车的自重相适应。采用车辆惯性四分之一的惯性飞轮组来模拟车辆惯性,这样负载电动机与辅助制动电动机可选较小功率电动机,降低了试验系统搭建成本和试验成本。 3.2.3电机
电机既可以把蓄电池电能转换成飞轮动能,也可以把无级变速器传过来的动能再装换成电能存储在蓄电池中,也是十分重要的装置。一般可以选用的电机有:异步电机、永磁同步电机、磁阻电机、爪极电机等。当然,每种电机都有各自的优缺点。
爪机电机的有点表现在可调节性和费用方面,这一点使爪机电机非常具有吸引力,因为它可提供直至约6KW的发电机功率及大体积发动机所需要的足够的启动功率。主机电机受取决于机型结构尺寸的限制。其他电机都适合于向上扩大功率频谱。永久磁铁的同步电机优点是励磁无损耗,根据结构形式只有少量的磁场减弱。这个必须通过超限度的脉冲反用换流器来平衡。磁阻原理首先在噪声性能和对间隙公差要求上暴露出了弱电。异步电机不因其最佳值而引人注目,但在所有领域中都可提供可接受的特性,这是将它作为曲轴电机使用的最大理由。在故障情况下它也具有良好的特性,如在机动车传
9
周勐:混联式电动汽车再生制动系统实验台设计
动系统的离合器范围中看到的那样,它比较适用环境条件(如:水、油、铁屑)。
综上所述,对于起动机—电动机来说,异步电机(盘式转子)的优点是,转子孔的内腔可以用来安装主动的机械部件,在装有自动变速器的汽车上就可以使用这个内腔。这样可以更好的利用空间,这种盘式转子电机就是一种理想的解决方案,所以本次毕业设计选用异步电机。 3.2.4蓄电池
近些年,许多汽车制造商都完成了新汽车电源结构的设计。努力的两个主要目标是:
一、开发高效率的技术方案,并以此继续降低汽车单位电能消耗。
二、顺应汽车上使用越来越多的电气负载的发展趋势,提供必要的功率。
对汽车制造商的挑战是将这两点结合起来的,当然也能给用户提供一种具有新功能和新特点的汽车电源结构。
混合电力车辆可以选用的电池种类有铅酸电池,镍氢电池,镍镉电池、锂离子电池,铁电池等很多种。但是镍氢电池以其非常好的综合性能成为了大多数混合动力车辆的首选配套电池。其能量密度、功率密度均高于铅酸电池和镍镉电池,循环使用寿命在实际电动车辆使用电池中是最高,快速充电和深度放电性能很好,充放电效率高,无重金属污染,全密封免维护。所以在此采用的也是镍氢电池作为动力电池。电池组额定电压为 216V,16Ah。电池和电机和配合工作在改善发动机的工作状况方面,特别在动力性能不变的前提下提高发动机经济性能和排放性能的方面起到了巨大的作用。 3.2.5功率变换器
功率变换器调节不同的负载处于额定功率运行同时也有不受电网波动影响的作用。功率变换器通过电力电子装置,在一个周期内调节而导通时间或是在几个周期内调节若干个连续导通或管断,保证再生发电时蓄电池充电稳定。 3.3再生制动系统与CVT融合的技术优势
由于无级变速器(ContinuouslyVariable Transmission,CVT)可以连续改变速比,使得汽车在任意行驶工况下,都可以按照驾驶员的操作意图实现发动机、电机与变速器的最佳匹配(最佳经济性匹配或最佳动力性匹配),使发动机的转速与车速相互独立,在发动机转速一定时,可以通过调节CVT的速比使车速在一定范围内变化,使发动机工作在高效区,从而可降低排放,提高燃油经济性、动力性、操纵性及乘坐舒适性。用在本试验台上,其优势是显而易见的:
(1)通过电动机提供额外的转矩,克服CVT技术仅适用于小排量汽车的局限性,将其搭载到中、高排量的汽车上。
(2)CVT速比的可连续变化配合适当的电机作为动力源,能够降低其电机功率和电池组容量,达到减轻自重和降低成本的目的。
(3)两者结合提高了试验台的自动化水平,为合理分配动力与改进综合控制策略提供了广阔的空间。
10
安徽工程大学机电学院毕业设计
(4)因为变速器的总变速比选择得很长,所以在回收时,不能因为存储重要的动能而把飞轮惯量提到足够高的转速,即使不能足够地利用机械回收,无级变速器也能使达到对功率和作用率有利的转速。这样,小型电机的回收也能得到改进。
11