在单元操作密集繁殖的时代,化学工程学另一些经典的分析手段也开始被引入或广泛发展。这包括过程中材料和能量平衡的研究以及多组分体系中基础热力学的研究。
化学工程师在帮助美国及其盟国赢得第二次世界大战的胜利中起了关键的作用。他们发展了合成橡胶的方法以代替在战争初期因日本的封锁而失去来源的天然橡胶。他们提供了制造原子弹所需要的铀-235,把制造过程从实验室研究一步放大到当时最大规模的工业化工厂,而他们在完善penicillin的生产工艺中也是功不可没,它挽救了几十万受伤士兵的生命。
工程学运动。由于不满意对工艺设备运行的经验描述,化学工程师开始从更基础的角度再审视单元操作。发生在单元操作中的现象可以分解到分子运动水平。这些运动的定量机械模型被建立并用于分析已有的仪器设备。过程和放应器的数学模型也被建立并被应用于资金密集型的美国工业如石油化学工业。 与工程学同时发展的是现在的化学工程课程设臵的变化。也许与其它发展相比较,核心课程为化学工程师运用综合技能解决复杂问题更加提供了信心。核心课程固定了一些基础科学为背景,包括数学,物理,和化学。这些背景对于从事以化学工程为中心的课题的艰苦研究是必须的,包括:
〃Multicomponent thermodynamics and kinetics, 〃Transport phenomena, 〃Unit operations, 〃Reaction engineering, 〃Process design and control, and 〃Plant design and systems engineering. 〃多组分体系热力学及动力学 〃传输现象 〃单元操作 〃反应工程 〃过程设计和控制 〃工厂设计和系统工程
这种训练使化学工程师们成为了在许多学科领域做出了突出贡献的人,包括在催化学、胶体科学和技术、燃烧、电化学工程、以及聚合物科学和技术方面。 Basic Trends In Chemical Engineering
2. 化学工程学的基本发展趋势
未来几年里,科学的进步,技术的竞争以及经济的驱动力将为化学工程是什么以及化学工程能做什么打造一个新的模型。 化学工程学的焦点一直是改变物体的物理状态或化学性质的工业过程。化学工程师致力于这些过程的合成、设计、测试放大、操作、控制和优选。他们从事于解决的这些问题,传统的规模水平和复杂程度可称之为中等的,这种规模的例子包括有单个过程(单元操作)所使用的反应器和设备以及制造厂里单元操作的组合,未来的研究将在规模上逐渐进行补充。除了中等规模,还有微型的以及更为复杂的系统----巨型的规模。
未来的化学工程师将比任何其他分支的工程师在更为宽广的规模范围紧密协作。例如,有些人可能从事于了解大范围的环境与中等规模的燃烧系统以及微型的分子水平的反应和传递之间的
6
关系。另一些人则从事了解合成的飞机的的性能与机翼所用化学反应器及反应器的设计和对此有影响的复杂流体动力学的研究工作因此,未来的化学工程师们要准备好解决从微型的到巨型的规模范围内出现的问题。他们要用来自其它学科的新的工具和理念来研究和实践:分子生物学,化学,固体物理学,材料学和电子工程学。他们还将越来越多地使用计算机、人工智能以及专家系统来解决问题,进行产品和过程设计,生产制造。在这个学科中还有两个重要的发展是我们前面没有提到的:化学工程师将越来越多地涉及到对过程设计进行补充的产品设计中。因为产品所表现出来的性能将逐渐与它被加工的途径挂钩。传统概念上产品设计与过程设计之间的区别将变得模糊,不再那么明显。在已有的和新兴的工业中将出现一个特殊的设计竞争,那就是生产有专利权的、有特点的产品以适应严格的性能指标。这些产品的特征是服从快速革新的需要,因而他们将在市场上很快地被更新的产品所取代。
化学工程师将经常性地介入到多学科领域的研究工程。化学工程师参与跨学科研究与化学科学、特种工业进行合作具有悠久的历史。随着工程学与分子科学最紧密地联系在一起,化学工程学的地位也越来越崇高。因为如化学、分子生物学、生物医学以及固体物理这样的科学都是为明天的科学技术提供种子,作为“界面科学”,化学工程学具有光明的未来,它将在多学科领域中搭建科学和工程学之间的桥梁,而在这里将出现新的工业技术。
Unit 12 what do we mean by transport phenomena ? 传递现象是工程科学三个典型领域系统性和综合性研究的总称:能量或热量传递,质量传递或扩散,以及动量传递或流体力学。当然,热量和质量传递在流体中经常发生,正因如此一些工程教育家喜欢把这些过程包含在流体力学的范畴内。由于传递现象也包括固体中的热传导和扩散,因此,传递现象实际上比流体力学的领域更广。传递现象的研究充分利用描述传热,传质,动量传递过程的方程间的相似性,这也区别于流体力学。这些类推(通常被这么叫)常常可以与传递现象发生的物理机制间的相似性关联起来。因此,一个传递过程的理解能够容易促使其他过程的理解。而且,如果微分方程和边界条件是一样的,只需获得一个传递过程的解决方案即可,因为通过改变名称就可以用来获得其他任何传递过程的解决方案。必须强调,虽然有相似之处,也有传递过程之间的差异,尤其重要的是运输动量(矢量)和热或质量(标量) 然而,系统地研究了相似性传递过程之间的相似性,使它更容易识别和理解它们之间的差别。
1.How We Approach the Subject 怎么研究传递过程? 为了找出传递过程间的相似性,我们将同时研究每一种传递过程——取代先研究动量传递,再传热,最后传质的方法。除了促进理解之外,对于不使用在其他教科书里用到的顺序法还有另一个教学的原因:在三个过程中,包含在动量传递研究中的概念和方程对初学者来说是最难以理解并使用因为在不具有有关动量传递的知识前提下一个人不可能完全理解传热和传质,在顺序法的情况下他就被迫先研究最难的课程即动量传递另一方面,如果课程同时被研究,通过参照有关传热的熟悉课程动量传递就变得更
好理解。而且,平行研究法可以先研究较为简单的概念,再深入到较难和较抽象的概念。我们可以先强调所发生的物理过程而不是数学性步骤和描述例如,我们将先研究一维传递现象,因为它在不要求矢量标注下就可以被解决,并且我们常常可以使用普通的微分方程代替难以解决的偏微分方程。加上传递现象的许多实际问题可以通过一维模型解决的这样一个事实,这种处理做法也是合理的。
2.Why Should Engineers Study Transport Phenomena? 为什么工程师要研究传递现象?
因为传递现象这个学科牵扯到自然界定则,一些人就把它划分为工程的一个分支正因如此,对于那些关心工厂和设备设计和操作经济性的工程师而言,十分应该探知在实际中传递现象如何起到价值作用。对于那些问题有两种通用型答案。第一种要求大家认识到传热,传质和动量传递发生在许多工程设备中,如热交换器,压缩机,核化反应器,增湿器,空气冷却器,干燥器,分离器和吸收器。这些传递过程也发生在人体内以及大气中污染物反应和扩散的一些复杂过程中。如果工程师要知道工程设备中正在发生什么并要做出能达到经济性操作的决策,对主导这些传递过程的物理定律有一个认识很重要。第二种答案是工程师需要能够运用自然定律的知识设计包含这些过程的工艺设备。要做到这点,他们必须能够预测传热,传质,或动量传递速率。例如,考虑一个简单的热交换器,也就是一根管道——通过维持壁温高于流经管道的流体温度来加热流体。热量从管壁传递到流体的速率取决于传热系数,传热系数反过来取决于管的大小,流体流速,流体性质等传统上传热系数是在耗费和耗时的实验室或模范工厂的测量之后获得并且通过使用一维经验方程关联起来经验方程是适合一定数据范围的方程,它们不是建立在理论基础上而且在应用数据的范围外不能被精确使用。使用在传递现象中比较不耗费和通常较为可靠的方法是从以自然定律为基础的方程中预测传热系数。预测的结果将由一个研究工程师通过解一些方程获得(常常在电脑上)设计工程师再使用由研究工程师获得的关于传热系数的方程要记住无论传热系数是怎么得来的设计热交换器的工作将基本上是一样的。正因如此,传递现象的一些课程只强调传热系数的决定而把真正的设计步骤留给单元操作中的一个课程当然,能获得参数也就是设计中使用的传热系数是事实,并正因此,一个传递现象课程可被视为一个工程课程或一个科学课程。实际上,在设备设计中有一些情况下设计工程师可能直接使用传递现象的方法和方程。一种情况就是设计可以被称为管道的管式反应器,如,前面所提过的热交换器,在它里面的液相中发生着一个均相化学反应。流体以一定浓度的反应物流进并以浓度降低的反应物和浓度增加的产物流出反应管。如果反应是放热的,为了移除化学反应生成的热量反应器壁通常维持在一个低的温度。. 因此沿径向方向也就是说随离管道中心线距离的增大,温度降低。再者,因为反应速率随温度升高而增大,在温度高的中心处的反应速率高于温度低的管壁处的反应速率结果,反应产物将倾向于在中心线处积累而反应物在靠近管壁处积累因此,沿径向和横向浓度和温度都将改变为了设计反应器我们需要知道在任意给定的管长下产物的平均浓度. 由于这个平均浓度是将整
7
个反应器内每个点的浓度平均起来得到的,实际上我们需要得到反应器内每个点的浓度,也就是说,在每个径向和横向位臵。但是为了计算每个点的浓度我们需要知道每个点处的反应速率,而为了计算每个点处的速率我们需要知道温度和浓度! 而且,为了计算温度我们也要知道每个点处的反应速率和速度我们将不得到所包含的方程,但显然有一组必须由精细繁琐的步骤解决的复杂偏微分方程(通常在电脑上)我们不能通过用于单元操作课程中关于热交换器的经验设计步骤来解决这样一个问题,应该是明显的。. 然而传递现象的理论和数学步骤是必不可少的,除非一个人愿意花金钱和时间去建立规模不断扩大的模范工厂并测出每一个工厂的产率。即便最后的扩大规模是靠不住和不确定的当然,并非今天所有的问题都能通过传递现象的方法解决。然而,随着电脑科技的发展,越来越多的问题通过这些方法正被解决。如果工程学学生要得到一个不过时的教育,他们必须通过理解传递现象的方法准备好去充分利用将在未来形成的计算机计算。由于其极大的潜能及当前的实用性,在一个大学生的在校学习生涯中,传递现象这门课程或许最终证明是最实用和有用的课程。
Unit 13 Unit Operations in Chemical Engineering
化学工程中的单元操作
化学工程由不同顺序的步骤组成,这些步骤的原理与被操作的物 料以及该特殊体系的其他特征无关。在设计一个过程中,如果(研究)步骤得到认可,那么所用每一步骤可以分别进行研究。有些步骤为化学反应,而其他步骤为物理变化。化学工程的可变通性(versatility)源于将一复杂过程的分解为单个的物理步骤(叫做单元操作)和化学反应的实践。化学工程中单元操作的概念基于这种哲学观点:各种不同顺序的步骤可以减少为简单的操作或反应。不管所处理的物料如何,这些简单的操作或反应基本原理(fundamentals)是相同的。这一原理,在美国化学工业发展期间先驱者来说是明显的,首先由A.D.Lttle 于1915 年明确提出: 任何化学过程,不管所进行的规模如何,均可分解为(be resolved into)一系列的相同的单元操作,如:粉碎、混合、加热、烘烤、吸收、压缩、沉淀、结晶、过滤、溶解、电解等等。这些基本单元操作(的数目)为数不多,任何特殊的过程中包含其中的几种。化学工程的复杂性来自于条件(温度、压力等等)的多样性,在这些条件下,单元操作以不同的过程进行,同时其复杂性来自于限制条件,如由反应物质的物化特征所规定的结构材料和设备的设计。最初列出的单元操作,引用的是上述的十二种操作,不是所有的操作都可视为单元操作。从那时起,确定了其他单元操作,过去确定的速度适中,但是近来速度加快。流体流动、传热、蒸馏、润湿、气体吸收、沉降、分粒、搅拌以及离心得到了认可。近年来,对新技术的不断理解以及古老但很少使用的分离技术的采用,引起了分离、处理操作或生产过程步骤上的数量不断增加,在多种操作中,这些操作步骤在使用时不要大的改变。这就是“单元操作”这个术语的基础,此基础为我们提供了一系列的技术。 1.单元操作的分类
(1)流体流动流体流动所涉及到的是确定任何流体的从一位 臵到另一位臵的流动或输送的原理。
(2)传热该单元操作涉及到(deal with)原理为:支配热量
和能量从一位臵到另一位臵的积累和传递。(3)蒸发这是传热中的一种特例,涉及到的是在溶液中挥发性溶剂从不挥发性的溶质(如盐或其他任何物质)的挥发。(4)干燥在该操作中,挥发性的液体(通常是水)从固体物质中除去。(5)蒸馏蒸馏是这样一个操作:因为液体混合物的蒸汽压强的差别,利用沸腾可将其中的各组分加以分离。(6)吸收在该操作中,一种气流经过一种液体处理后,其中一种组分得以除去。(7) 膜分离该操作涉及到液体或气体中的一种溶质通过半透膜向另一种流中的扩散。(8)液-液萃取在该操作中,(液体)溶液中的一种溶质通过与该溶液相对不互溶的另一种液体溶剂相接触而加以分离。 (9)液-固浸取在该操作所涉及的是,用一种液体处理一种 细小可分固体,该液体能溶解这种固体,从而除去该固体中所含的溶质。(10) 结晶结晶涉及到的是,通过沉降方法将溶液中的溶质(如一种盐)从该溶液中加以分离。(11)机械物理分离这些分离方法包括,利用物理方法分离固体、液体、或气体。这些物理方法,如过滤、沉降、粒分,通常归为分离单元操作。 许多单元操作有着相同的基本原理、基本原则或机理。例如,扩 散机理或质量传递发生于干燥、吸收、蒸馏和结晶中,传热存在于干燥、蒸馏、蒸发等等。2. 基本概念因为单元操作是工程学的一个分支,所以它们同时建立在科学研究和实验的基础之上。在设计那些能够制造、能组合、能操作、能维修的设备时,必须要将理论和实践结合起来。下面四个概念是基本的(basic),形成了所有操作的计算的基础。物料衡算
如果物质既没有被创造又没有被消灭,除了在操作中物质停留和 积累以外,那么进入某一操作的所有物料的总质量与离开该操作的所有物料的总质量相等。应用该原理,可以计算出化学反应的收率或工程操作的得率。在连续操作中,操作中通常没有物料的积累,物料平衡简单地由所有的进入的物料和所有的离开的物料组成,这种方式与会计所用方法相同。结果必须要达到平衡。 只要(as long as)该反应是化学反应,而且不消灭或创造原子, 那么将原子作为物料平衡的基础是正确的,而且常常非常方便。可以整个工厂或某一单元的任何一部分进行物料衡算,这取决于所研究的问题。能量恒算相似地,要确定操作一操作所需的能量或维持所需的操作条件时,可以对任何工厂或单元操作进行能量衡算。该原理与物料衡算同样重要,使用方式相同。重要的是记住,尽管能量可能会转换为另一种等量形式,但是要把各种形式的所有的能量包括在内。理想接触(平衡级模型)无论(whenever)所处理的物料在具体条件(如温度、压强、化学组成或电势条件)下接触时间长短如何,这些物料都有接近一定的平衡条件的趋势,该平衡由具体的条件确定。在多数情况下,达到平衡条件的速率如此之快或所需时间足够长,以致每一次接触都达到了平衡条件。这样的接触可视为一种平衡或一种平衡接触。理想接触数目的计算是理解这些单元操作时所需的重要的步骤,这些单元操作涉及到物料从一相到另一相的传递,如浸取、萃取、吸收和溶解。操作速率(传递速率模型)在大多数操作中,要么是因为时间不够,要么是因为不需要平衡,因此达不到平衡,只要一达到平衡,就不会发生进一步变化,该过程就会停止,但是工程师们必须要使该过程继续进行。由于这种原因,速率操作,例如能量
8
传递速率、质量传递速率以及化学反应速率,是极其重要而有趣的。在所有的情况中,速率和方向决定于位能的差异或驱动力。速率通常可表示为,与除以阻力的压降成正比。这种原理在电能中应用,与用于稳定或直流电流的欧姆定律相似。用这种简单的概念解决传热或传质中的速率问题时,主要的困难是对阻力的估计,阻力一般是通过不同条件下许多传递速率的确定式(determination)的经验关联式加以计算。
速率直接地决定于压降,间接地决定于阻力的这种基本概念,可 以运用到任一速率操作,尽管对于特殊情况的速率可以不同的方式用特殊的系数来表达。
Unit 21 Chemical Industry and Environme化学工业与环境
我们怎样才能减少产生废物的数量?我们怎样才能使废弃物质和商品纳入循环使用的程序?所有这些问题必须要在未来的几年里通过仔细的研究得到解决,这样我们才能保持文明与自然的平衡。1.大气化学 燃煤发电厂像一些自然过程一样,也会释放硫化合物到大气层中,在那里氧化作用产生硫酸颗粒能反射入射进来的可见太阳辐射。在对流层,化石燃料燃烧所产生的氮氧化物在阳光的影响下与许多有机物分子结合产生都市烟雾。挥发的碳氢化合物异戊二烯,也就是众所周知的合成橡胶的结构单元,可以在森林中天然产生含氯氟烃。我们所熟悉的CFCs,在汽车空调和家用冰箱里是惰性的,但在中平流层内在紫外线的照射下回发生分解从而对地球大气臭氧层造成破坏,全球大气层中臭氧的平均浓度只有3ppm,但它对所有生命体的生长发育都起了关键的保护作用,因为是它吸收了太阳光线中有害的短波紫外辐射。在过去的二十年中,公众的注意力集中在人类对大气层的改变:酸雨、平流层臭氧空洞、温室现象,以及大气的氧化能力增强,前几代人已经知道,人类的活动会对邻近的环境造成影响,但意识到像酸雨这样的效应将由局部扩展到洲际范围则是慢慢发现的。随着臭氧空洞问题的出现,考虑到对全球的威胁,我们已真正进入到全球话改变的时代,但是基本的科学论据还没有完全建立。2.命周期分析产品生命循环周期的每一个阶段都会对环境造成影响。从原材料的提取,到加工、制造和运输的过程,最后到被消耗和丢弃或回收,每一个阶段都对工艺学和化学提出了挑战。重新设计产品和过程以减少对环境的影响需要新的生产原理和在不同的水平层面上理解化学变化,对环境友善的产品要求有新的原料,它们应是可再使用的,可循环的,或者可生物降解的。物质的性质是由其化学组成和结构决定的,要减少废品和有污染的副产品,就要开发新的化学工艺线路,已开发的化学分离技术需要有效地提高以分离出剩余的污染物,这反过来又要求新的化学处理方法使它们变得无害。而诸如放射性元素和那些不容易转化为无害物质的重金属污染物则需要把它们固定为惰性物质以便能安全地储放。还有最后一点,早期的污染残留物,对环境污染程度尚未很意识到的一些物质要求进一步用化学和生物的修复技术进行处理。了解化学反应的机理可以帮助我们发现以前不知道的环境问题,CFCs对臭氧层造成的威胁能够正确地预防要得益于大气化学的基础研究。由此导致了国际上一致同意逐步取消这些产品的生产。而代之以作用相同但对环境更为友善的其它产品。另一方面,南极上空臭氧空洞的出现使科学家们大
为震惊,随后才发现了以前所不了解的南极寒冷的平流层内硝酸晶体表面所发生的氯原子的反应。这对我们进一步了解自然界中所发生的化学反应过程是非常重要的。不管这些反应是发生在淡水中,海水中,土壤里,地下环境或是大气中。
3.对环境影响最小的生产把废物排放到空气、水或土壤中不仅对环境造成了直接的影响,还是对自然资源的一个潜在的浪费。早期减少化学过程对环境影响的工作主要集中在工厂废气排放如环境之前有害物质的分离,但这种思路只考虑了问题的一半。因为一个理想的化学过程,也就是没有有害的副产品产生的过程应在一开始就建立好,任何排放物至少应像进入到工厂内的空气和水一样干净。这样的过程才可以称是“与环境友善的”。对健康有害影响的关注逐渐升级,人们首先考虑到如何消除或减少工业过程中所用有害化学物质的数量。最好的方法是寻找替代的化学产品,它们能起到一样的作用但毒害性较小。如果不能寻找到一种有毒化学物质的替代品,那么比较好的战略思想是开发一种就地生产的工艺,而且只生产当时所需要的那么多的数量。革新的化学方法已开始设计对环境合理的工艺过程,以便更为有效的使用能量和原材料。例如,催化剂方面的近期进展使化学反应可以在较低的温度和压力下进行。反过来,这种改变又减少了这些过程的能量需求,简化了制造加工设备对构成材料的选择,新的催化剂还用于避免生产不希望的副产品。
4. 发电厂排放物的控制
通过燃煤、燃油和燃烧天然气产生能量的设备都会排放出一氧化碳、碳氢化合物、氮氧化物以及许多其它不受欢迎的副产物如灰尘和痕量的汞。现在可以采用一系列不断发展的技术来减少不希望有的物质的排放以适应国家和地区标准的要求。化学家和化学工程师对工业水平的进步做出了巨大的贡献。而催化科学为开辟这些前沿领域正在扮演重要的角色同时控制多种污染物是近年来开发先进的催化剂或吸附剂技术的目的。例如,催化方法可以使汽车尾气中CO氧化的同时,还原氮的氧化物。另一些研究工作则定位于在中试阶段通过一种吸附剂的作用同时去除烟道气中的硫和氮氧化物,而不会产生大量的废物。
3. 对环境友善的产品
对产品在环境中的变化越来越了解使得科学家们开始设计“绿色”产品。一个重要的例子来自1940-1950s的洗涤剂工业。当时以支链烷基苯磺酸盐为表面活性剂的新产品被引入。这些洗涤剂洗涤效率更高。但其后发现这些物质残留在废水中在河面上形成泡沫。问题追溯到这些支链的烷基苯磺酸盐:它不像以前人们所使用的肥皂。它不能被传统污水处理厂的细菌所有效地生物降解。经过深入的研究工作了解了生物化学过程使化学家们设计和合成了另一类新型的表面活性剂,为直链烷基苯磺酸盐。这些新的化合物与传统肥皂中的脂肪酸有相似的分子结构,因而微生物可以降解这些组分,而它与支链烷基苯磺酸盐的相似性又使其具有卓越的洗涤性能。新的生物化学也正在帮助农民减少使用杀虫剂.例如,棉作物可以通过改变基因而具备对棉螟蛉的抵抗力.天然存在的细菌中一个基因当被转移到棉作物中时,能够祖师作物产生一种原来有细菌产生的蛋白质.当螟蛉虫开始吃作物时,这种蛋白质通过切断螟蛉的消化过程从而杀死害虫.
9
6. 处理越来越多的环境问题与废物的排放有关,而一些原材料又存在供给有限的问题.这二者的联系引起了人们对处理这一课题越来越大的兴趣.金属和大多数纸张的处理从技术上来说是简单的,这些物质在世界很多地方都已普遍进行了处理.塑料的处理则面临着较大的技术方面的挑战.即使把它们与其它类型的废品分离开来以后,不同种类的塑料还需要再彼此分离。即使如此,不同类型的塑料具有不同的化学性质,因而也需要开发不同的处理工艺.一些塑料可以通过简单地熔化注塑或用合适的溶剂进行分解再重新塑造成新塑料的方法进行处理。比如,把大的聚合物分子裂解成较小的亚单元,再以此作为新聚合物的结构单元。确实,用这种方法处理软塑料瓶的计划正在进行中。化学家和化学工程师们所做的大量的研究工作需要被成功地开发为所需要的处理技术。有时,也需要开发一些全新的聚合材料.它们具有更容易进行处理的分子结构.
7. 通过分离和转换减少废物量把一些需要进行特殊处理的成分从那些可用常规方法处理或处臵的废物中分离出来需要新的工艺过程。而开发这些过程则需要深入研究以从根本上了解所涉及的化学现象.含金属离子的酸性废水.一些工业过程产生了大量的酸性废水.这些废水可以分离成干净的水、可再利用的酸、以及可从中提取出可回收金属的淤渣吗?这样的处理过程既可以保护环境,所需费用又与处臵废水所需成本及罚款相差无几。工业废水处理。工业废水中的有害有机物能被热催化或光催化的过程破坏。一项前景很好的研究工作是利用高温高压下的超临界水。在这种条件下,水表现出截然不同的物理和化学性质,它可以溶解并有助于那些在常态下的水中几乎是惰性的物质发生反应。高辐射的核废料。如果需要储藏的核废料其数量和组成能够显著地减少,就可以节省一大笔的费用。这种减少需要用经济的方法把放射性成分与大量其它与核废料共存的物质分离开来,这样有害的化学废料就可以分别地进行处臵,核废料的处臵仍将需要今后许多年进行大量的研究和开发工作。膜技术。应用半渗透性薄膜进行分离大有希望获得成功。这些膜通常是片状聚合物。能够让一些化学物质通过而不让另一些物质通过。这些膜常用来纯化水,阻挡住一些溶解的盐类提供干净的饮用水。膜分离技术也用来提纯制造厂出来的废水。膜分离还可以用在气体方面,用来回收天然气中的微量组分。通过清除CO提高天然气的热值,以及从空气中得到氮气。研究中的难点包括开发化学和物理学方面更有弹性的膜。这样可以使制造费用不那么贵,并且可以提供更好的分离效率以降低分离成本。生物技术。科学家们已经向自然界寻求帮助战胜有毒物质。土壤、水和沉积物中的一些微生物能以许多有机化学物质为食。数十年来它们一直被用于传统的水处理系统。研究者们正通过仔细测量微生物生存的最佳物理、化学和营养条件致力于处理强度更高的对象。他们的工作可能导致设计和生产新一代生物废水处理设备。近年来的一个很大的进展是生物反应器内微生物的固定。即把微生物固定在反应器内降解废物。这种固定可以允许有更高的流速。传统反应器内流速过高会冲走微生物。新的多孔载体的使用也使每个反应器中微生物的数量明显提高