⑶转录因子的作用特点:①同一DNA顺式作用元件可被不同的转录因子所识别;②同一转录因子也可识别不同的DNA顺式作用元件;③TF与TF之间存在相互作用;④当TF与TF,TF与DNA结合时,可导致构象改变;⑤TF在合成过程中,有较大的可变性和可塑性。
3.转录激活及其调控:真核RNA聚合酶Ⅱ的激活需要依赖多种转录因 子,并与之形成复合体。其过程首先是由TFⅡD识别启动子序列并与之结合;继而RNA聚合酶Ⅱ与TFⅡD、B等聚合形成一个功能性的前起始复合体 --PIC;最后,结合了增强子的转录因子与前起始复合体结合,从而形成稳定的转录起始复合体。---
第十五章 基因重组和基因工程 一、自然界的基因转移和重组:
基因重组(gene recombination)是指DNA片段在细胞内、细胞间,甚至在不同物种之间进行交换,交换后的片段仍然具有复制和表达的功能。
1.接合作用:当细胞与细胞相互接触时,DNA分子即从一个细胞向另一个细胞转移,这种遗传物质的转移方式称为接合作用(conjugation)。 2.转化和转染:由外来DNA引起生物体遗传性状改变的过程称为转化
(transformation)。噬菌体常常可感染细菌并将其DNA注入细菌体内,也可引起细菌遗传性状的改变。通过感染方式将外来DNA引入宿主细 胞,并导致宿主细胞遗传性状改变的过程称为转染(transfection)。转染是转化的一种特殊形式。 3.整合和转导:外来DNA侵入宿主细胞,并与宿主细胞DNA进行重 组,成为宿主细胞DNA的一部分,这一过程称为整合。整合在宿主细胞染色体DNA中的外来DNA,可以被切离出来,同时也可带走一部分的宿主DNA,这一 过程称为转导(transduction)。来源于宿主DNA的基因称为转导基因。
4.转座:转座又称为转位(transposition),是指DNA的片段或基因从基因组的一个位置转移到另一个位置的现象。这些能够在基因组中自由游动的DNA片段包括插入序列和转座子两种类型。
⑴插入序列:典型的插入序列(insertion sequence,IS)是长750-1500bp的DNA片段,由两个分离的反向重复序列和一个转座酶基因。当转座酶基因表达时,即可引起该序列的转座。其转座方式主要有保守性转座和复制性转座。
⑵转座子:转座子(transposons)是可从一个染色体位点转移到另一个位点的分散的重复序列,含两个反向重复序列、一个转座酶基因和其他基因(如抗生素抗性基因)。
免疫球蛋白重链基因由一组可变区基因(VH)和一组恒定区基因(CH)构成,通过这些基因的选择性转座和重组,就可以转录表达出各种各样的免疫球蛋白重链,以对付不同的抗原。 5.基因重组的方式:
⑴位点特异性重组:在整合酶的催化下,两段DNA序列的特异的位点处发生整合并共价连接,称为位点特异性重组。
⑵同源重组:发生在同源DNA序列之间的重组称为同源重组
(homologous recombination)。这种重组方式要求两段DNA序列类似,并在特定的重组蛋白或酶的作用下完成。 二、重组DNA技术:
重组DNA技术又称为基因工程(genetic engineering)或分子克隆
(molecular cloning),是指采用人工方法将不同来源的DNA进行重组,并将重
组后的DNA引入宿主细胞中进行增殖或表达的过程。
1.载体和目的基因的分离(分):对载体DNA和目的基因分别进行分离纯化,得到其纯品。
⑴载体:常用的载体(vector)主要包括质粒 (plasmid)、噬菌体(phage)和病毒(virus)三大类。这些载体均需经人工构建,除去致病基因,并赋予一些新的功能,如有利于进行筛选的 标志基因、单一的限制酶切点等。①质粒:是存在于天然细菌体内的一种独立于细菌染色体之外的双链环状DNA,具有独立复制的能力,通常带有细菌的抗药基 因。②噬菌体:可通过转染方式将其DNA送入细菌体内进行增殖。常用的为人工构建的λ噬菌体载体,当目的基因与噬菌体DNA进行重组时,可采用插入重组方 式,也可采用置换重组方式。③病毒:常用的为SV40,通过感染方式将其DNA送入哺乳动物细胞中进行增殖。
⑵目的基因:①直接从染色体DNA中分离:仅适用于原核生物基因的分 离。②人工合成:根据已知多肽链的氨基酸顺序,利用遗传密码表推定其核苷酸顺序再进行人工合成。适应于编码小分子多肽的基因。③从mRNA合成cDNA: 采用一定的方法钓取特定基因的mRNA,再通过逆转录酶催化合成其互补DNA(cDNA),除去RNA链后,再用DNA聚合酶合成其互补DNA链,从而得 到双链DNA。④从基因文库中筛选:将某一种基因DNA用适当的限制酶切断后,与载体DNA重组,再全部转化宿主细胞,得到含全部基因组DNA的种群,称 为G文库
(genomic DNA library)。将某种细胞的全部mRNA通过逆转合成cDNA,然后转化宿主细胞,得到含全部表达基因的种群,称 为C-文库(cDNA library)。C-文库具有组织细胞特异性。⑤利用PCR合成:如已知目的基因两端的序列,则可采用聚合酶链反应 (polymerase chain reaction, PCR)技术,在体外合成目的基因。
2.载体和目的基因的切断(切):通常采用限制性核酸内切酶
(restriction endonuclease),简称限制酶,分别对载体DNA和目的基因进行切断,以便于重组。能够识别特定的碱基顺序并在特定 的位点降解核酸的核酸内切酶称为限制酶。限制酶所识别的顺序往往为4-8个碱基对,且有回文结构。由限制酶切断后的末端可形成平端、3'-突出粘性末端和 5'-突出粘性末端三种情况。形成粘性末端(cohesive end)者较有利于载体DNA和目的基因的重组。 3.载体和目的基因的重组(接):即将带有切口的载体与所获得的目的基因连接起来,得到重新组合后的DNA分子。
⑴粘性末端连接法:载体与目的基因通过粘性末端进行互补粘合,再加入DNA连接酶,即可封闭其缺口,得到重组体。
⑵人工接尾法:即同聚物加尾连接法。在末端核苷酸转移酶的催化下,将脱氧核糖核苷酸添加于载体或目的基因的3'-端,如载体上添加一段polyG,则可在目的基因上添加一段polyC,通过碱基互补进行粘合后,再由DNA连接酶连接。 ⑶人工接头连接法:将人工连接器(即一段含有多种限制酶切点的DNA片段)连接到载体和目的基因上,即有可能使用同一种限制酶对载体和目的基因进行切断,得到可以互补的粘性末端。
4.重组DNA的转化和扩增(转):将重组DNA导入宿主细胞进行增 殖或表达。重组质粒可通过转化方式导入宿主细胞,λ噬菌体作为载体的重组体,则需通过转染方式将重组噬菌体DNA导入大肠杆菌等宿主细胞。重组DNA导入 宿主细胞后,即可在适当的培养条件下进行培养以扩增宿主细胞。 5.重组DNA的筛选和鉴定(筛):对含有重组体的宿主细胞进行筛选并作鉴定。
⑴根据重组体的表型进行筛选:对于带有抗药基因的质粒重组体,可采用插入灭活法进行筛选。
⑵根据标志互补进行筛选:当宿主细胞存在某种基因及其表达产物的缺陷时,可采用此方法筛选重组体。即在载体DNA分子中插入相应的缺陷基因,如宿主细胞重新获得缺陷基因的表达产物,则说明该细胞中带有重组体。
⑶根据DNA限制酶谱进行分析:经过粗筛后的含重组体的细菌,还需进行限制酶谱分析进一步鉴定。
⑷用核酸杂交法进行分析鉴定:采用与目的基因部分互补的DNA片段作为探针,与含有重组体的细菌菌落进行杂交,以确定重组体中带目的基因。
获得带目的基因的细菌后,可将其不断进行增殖,从而得到大量的目的基因片段用于分析研究。如在目的基因的上游带有启动子顺序,则目的基因还可转录表达合成蛋白质。
第十六章 细胞信息传递 一、细胞间信息物质: 凡是由细胞分泌的、能够调节特定的靶细胞生理活动的化学物质都称为细胞间信息物质,或第一信使。
1.激素:激素(hormone)是由特殊分化细胞合成并分泌的一类生理活性物质,这些物质通过体液进行转运,作用于特定的靶细胞,调节细胞的物质代谢或生理活动。
⑴激素的分类:激素可按照其化学本质的不同分为四类。①类固醇衍生物:如肾上腺皮质激素、性激素等;②氨基酸衍生物:如甲状腺激素,儿茶酚胺类激素;③多肽及蛋白质:如胰岛素、下丘脑激素、垂体激素等;④脂肪酸衍生物:如前列腺素。
⑵激素的作用方式:①自分泌:激素分泌释放后仍作用于自身细胞,其传递介质为胞液;②旁分泌:激素分泌释放后作用于邻近的靶细胞,其传递介质为细胞间液。③内分泌:激素分泌后作用较远的靶细胞,其传递介质为血液。
2.细胞因子:细胞因子是指由细胞分泌的一类信息分子,可作用于特定的靶细胞,调节细胞的生长,分化等生理功能。细胞因子也可通过自分泌、旁分泌和内分泌三种方式作用于特定的靶细胞。
常见的细胞因子有:表皮生长因子(EGF)、血小板衍生生长因子(PDGF)、成纤维细胞生长因子(FGF)、神经生长因子(NGF)、胰岛素样生长因子(IGF)等。
3.神经递质:由神经元突触前膜释放的信息物质,可作用于突触后膜上的受体,传递神经冲动信号。 二、细胞内信息物质:
存在于细胞内,能够传递特定调控信号的化学物质称为细胞内信息物质。 1.第二信使:在细胞内传递信息的小分子化学物质称为第二信使。① 环核苷酸类:如cAMP和cGMP;② 脂类衍生物:如甘油二脂(DAG),1,4,5-三磷酸肌醇(IP3),花生四烯酸等。③ 无机物:如Ca2+、NO等。
2.信号蛋白:细胞膜上或细胞内能够传递特定信号的蛋白质分子,常与其他蛋白质或酶构成复合体以传递信息。如G蛋白、连接蛋白(SOS,GRB2)、鸟苷酸交换蛋白(GEF)、GTPase激活蛋白(GAP)等。 3.信号酶:细胞内能够传递特定调控信号的酶蛋白分子。如胰岛素受体底物-1/2(IRS1/2)、 MAPKKK(Raf-1)、MAPKK(MEK-1/2)、MAPK(ERK1/2)、PKA、
PKB、PKC、PKG、PAK、PDK、CaMPK等。 三、受体的分类、结构与功能:
受体(receptor)是指存在于靶细胞膜上或细胞内的一类特殊蛋白质分子,它们能识别特异性的配体并与之结合,产生各种生理效应。 1.根据受体的亚细胞定位分类:
⑴细胞膜受体:这类受体是细胞膜上的结构成分,一般是糖蛋白、脂蛋白或糖脂蛋白。多肽及蛋白质类激素、儿茶酚胺类激素、前列腺素以及细胞因子通过这类受体进行跨膜信号传递。
⑵细胞内受体:这类受体位于细胞液或细胞核内,通常为单纯蛋白质。此型受体主要包括类固醇激素受体,维生素D3受体(VDR)以及甲状腺激素受体(TR)。 2.根据受体的分子结构分类:
⑴配体门控离子通道型受体:此型受体本身就是位于细胞膜上的离子通道。其共同结构特点是由均一性的或非均一性的亚基构成一寡聚体,而每个亚基则含有4~6个跨膜区。此型受体包括烟碱样乙酰胆碱受体(N-AchR)、A型γ-氨基丁酸受体(GABAAR)、谷氨酸受体等。
⑵G蛋白偶联型受体:此型受体通常由单一的多肽链或均一的亚基组成,其肽链可分为细胞外区、跨膜区、细胞内区三个区。在第五及第六跨膜α螺旋结构之间的细胞内环部分(第三内环区),是与G蛋白偶联的区域。大多数常见的神经递质受体和激素受体是属于G蛋白偶联型受体。 G蛋白是由α、β、γ亚基组成的三聚体,存在于细胞膜上,其α亚基具 有GTPase活性。当配体与受体结合后,受体的构象发生变化,与α亚基的C-端相互作用, G蛋白被激活,此时,α亚基与β、γ亚基分离,可分别与效应 蛋白(酶)发生作用。此后,α亚基的GTPase将GTP水解为GDP,α亚基重新与β、γ亚基结合而失活。
⑶单跨膜α螺旋型受体:此型受体只有一段α螺旋跨膜,受体本身具有酪氨酸蛋白激酶活性;或当受体与配体结合后,再与具有酪氨酸蛋白激酶活性的酶分子相结合,进一步催化效应酶或蛋白质的酪氨酸残基磷酸化,也可以发生自身蛋白酪氨酸残基的磷酸化,由此产生生理效应。
此型受体主要有表皮生长因子受体(EGFR),胰岛素受体(IR),血小板衍生生长因子受体(PDGFR)等。此型受体的主要功能与细胞生长及有丝分裂的调控有关。
⑷转录调控型受体:此型受体分布于细胞浆或细胞核内,其配体通常具有 亲脂性。结合配体的受体被活化后,进入细胞核作用于染色体,调控基因的开放或关闭。受体的分子结构有共同特征性结构域,即分为高度可变区-DNA结合区及 绞链区-激素结合区。①高度可变区:不同激素的受体此区的一级结构变化较大,其功能主要是与调节基因转录表达有关。②DNA结合区及绞链区:此区的功能是 与受体被活化后向细胞核内转移(核转位)并与特异的DNA顺序结合有关。③激素结合区:一般情况下,此区与一种称为热休克蛋白90(hsp90)的蛋白质 结合在一起而使受体处于失活状态。 四、受体与配体的结合特点:
1.高度的亲和力:配体与其受体的结合具有高度亲和力,多数配体与受体的解离常数为10-11~10-9mol/L。 2.高度的特异性:指一种激素或细胞因子只能选择性与相应的受体结合的性质。 3.可逆性:配体与受体通常通过非共价键而结合。
4.可饱和性:由于存在于细胞膜上或细胞内的受体数目是一定的,因此配体与受体的结合也是可以饱和的。
5.结合量与效应成正比:配体的浓度越大,配体与受体的亲和力越大,受体的数目越多,则配体与受体的结合量越大,产生的生理效应也越大。
五、细胞信息传递途径: 1.cAMP-蛋白激酶A途径:
通过这一途径传递信号的第一信使主要有儿茶酚胺类激素、胰高血糖素、 腺垂体的激素、下丘脑激素等。其受体属于G蛋白偶联型膜受体,G蛋白有激活型的Gs和抑制型的Gi两种。腺苷酸环化酶(AC)存在于细胞膜上,可接受G蛋 白的信号而被激活,催化ATP转化为cAMP,导致细胞内cAMP浓度升高,从而激活蛋白激酶A(PKA)。PKA是一种四聚体,两个亚基为催化亚基,两 个亚基为调节亚基。当调节亚基与cAMP结合后发生变构(每一调节亚基可结合两分子cAMP),与催化亚基解聚,从而使催化亚基激活。PKA可促使多种酶 或蛋白质丝氨酸或苏氨酸残基的磷酸化,改变酶的催化活性或蛋白质的生理功能。 2.IP3,Ca2+-CaM激酶途径:
通过此途径传递信号的第一信使主要有:①激素:儿茶酚胺、血管紧张素 Ⅱ等。②生长因子:PDGF、EGF等。③神经递质:乙酰胆碱、5-羟色胺等。其受体可为G蛋白偶联型,也可为酪氨酸蛋白激酶型。G蛋白为Gp型。通过 Gp蛋白介导,存在于细胞膜上的PLCβ可被激活;而PLCγ则是在受体的酪氨酸蛋白激酶催化下,其酪氨酸残基被磷酸化修饰而激活。PLC激活后,可催化 膜上的磷脂酰肌醇-4,5-双磷酸(PIP2)水解成为二脂酰甘油(DAG)及1,4,,5-三磷酸肌醇(IP3)。当IP3与存在于内质网膜上的IP3 受体结合后,钙通道开放,贮存于内质网中的Ca2+释放进入胞液,引起胞液中Ca2+浓度升高。胞液中的钙调蛋白(CaM)与Ca2+结合发生变构,从而 激活依赖Ca2+/CaM的蛋白激酶(CaM激酶),催化数十种酶或蛋白质的磷酸化修饰,产生相应的调节作用。 3.DAG-蛋白激酶C途径:
此途径的第一信使与IP3,Ca2+-CaM激酶途径相似,也通过 Gp型和另一种G蛋白介导信息,激活磷脂酶C(PLC)和磷脂酶D(PLD)。PLD是存在于细胞膜上的另一种磷脂酶,在Ca2+的存在下,可将磷脂酰胆 碱水解成为磷脂酸(PA),PA可进一步在磷脂酸磷酸水解酶(PAP)的催化下水解生成DAG,是DAG的另一生成途径。胞液中DAG浓度升高,可致蛋白 激酶C激活。该酶可催化底物蛋白质丝氨酸或苏氨酸残基的磷酸化。经典的蛋白激酶C需在Ca2+,DAG和磷脂酰丝氨酸的存在下才能被激活。 4.Ras-MAPK途径:
已知胰岛素和大部分的生长因子经此途径传递信号。主要过程为:
EGF + EGFR → SHC磷酸化 → 形成SHC-SOS-GRB2-Ras复合体 → Ras激活 → Raf-1激酶↑ → MEK1/2 ↑ → ERK1/2 ↑ → 细胞生长与调亡。 5.胞内受体介导途径:
通过细胞内受体传递信号的第一信使有:①类固醇激 素;②1,25-(OH)2D3;③甲状腺激素。当激素与受体结合后,引起hsp90与受体解离,受体被活化;活化受体核转移并与HRE结合;特异基因去 阻遏且RNA聚合酶活性增高,特异基因表达及特异蛋白质合成,产生特定的生理效应。---------- 第二十一章 癌基因和抑癌基因