∴x=60,
∴∠ADC=60°.
1点评:本题考查了圆周角定理以及直角三角形的性质,正确得到∠C=2∠BOC是解题的关
键. 19.(2012?长沙)如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°, (1)求证:△ABC是等边三角形; (2)求圆心O到BC的距离OD.
考点:圆周角定理;等边三角形的判定;垂径定理;解直角三角形. 专题:探究型. 分析:(1)先根据圆周角定理得出∠ABC的度数,再直接根据三角形的内角和定理进行解答即可;
(2)连接OB,由等边三角形的性质可知,∠OBD=30°,根据OB=8利用直角三角形的性质即可得出结论. 解答:解:(1)在△ABC中, ∵∠BAC=∠APC=60°, 又∵∠APC=∠ABC, ∴∠ABC=60°, ∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°, ∴△ABC是等边三角形;
(2)∵△ABC为等边三角形,⊙O为其外接圆, ∴O为△ABC的外心, ∴BO平分∠ABC, ∴∠OBD=30°,
26
1∴OD=8×2=4.
点评:本题考查了圆周角定理、等边三角形的判定,垂径定理,解直角三角形等知识,将各知识点有机结合,旨在考查同学们的综合应用能力. 20.(2012?大庆)如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°. (1)求∠ACB的大小;
(2)求点A到直线BC的距离.
考点:圆周角定理;等腰三角形的判定与性质;含30度角的直角三角形. 分析:(1)根据垂直平分线的性质得出AB=BC,进而得出∠A=∠C=30°即可; (2)根据BC=3,∠ACB=30°,∠BDC=90°,得出CD的长,进而求出AE的长度即可. 解答:解:(1)连接BD,
∵以BC为直径的⊙O交AC于点D, ∴∠BDC=90°, ∵D是AC中点,
∴BD是AC的垂直平分线, ∴AB=BC, ∴∠A=∠C, ∵∠ABC=120°, ∴∠A=∠C=30°,
27
即∠ACB=30°;
(2)过点A作AE⊥BC于点E, ∵BC=3,∠ACB=30°,∠BDC=90°,
CDCD∴cos30°=BC=3, 33∴CD=2,
∵AD=CD, ∴AC=33,
∵在Rt△AEC中,∠ACE=30°,
331?33∴AE=2=2.
点评:此题主要考查了圆周角定理、等腰三角形的判定与性质、含30度角的直角三角形的性质,根据已知得出CD的长度是解题关键. 21.(2012?怀化)如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB. (1)当∠ADC=18°时,求∠DOB的度数; (2)若AC=23,求证:△ACD∽△OCB.
考点:圆周角定理;等腰三角形的性质;勾股定理;垂径定理;相似三角形的判定. 专题:证明题;几何综合题. 分析:(1)连接OA,根据OA=OB=OD,求出∠DAO、∠OAB的度数,求出∠DAB,根据圆周角定理求出即可;
28
(2)过O作OE⊥AB于E,根据垂径定理求出AE和BE,求出AB,推出C、E重合,得
ACDC?OCBC,根据相似三角形的判定推出即可. 出∠ACD=∠OCB=90°,求出DC长得出
解答:(1)解:连接OA,
∵OA=OB=OD,
∴∠OAB=∠OBC=30°,∠OAD=∠ADC=18°, ∴∠DAB=∠DAO+∠BAO=48°,
由圆周角定理得:∠DOB=2∠DAB=96°.
(2)证明:过O作OE⊥AB于E, 由垂径定理得:AE=BE,
∵在Rt△OEB中,OB=4,∠OBC=30°,
1∴OE=2OB=2,
由勾股定理得:BE=23=AE, 即AB=2AE=43, ∵AC=23, ∴BC=23,
即C、E两点重合, ∴DC⊥AB,
∴∠DCA=∠OCB=90°,
∵DC=OD+OC=2+4=6,OC=2,AC=BC=23,
ACDC∴
OC?BC=3, ∴△ACD∽△OCB(两边对应成比例,且夹角相等的两三角形相似).
29
点评:本题综合考查了垂径定理,圆周角定理,相似三角形的判定,勾股定理,等腰三角形的性质的应用,主要考查学生能否运用性质进行推理,题目综合性比较强,是一道比较好的题目.
30