8.(5)
考虑已失分情况。要使平均成绩达到95分以上,也就是每次平均失分不多于5分.
(100-90)×4÷5=8(次)8-4=4次,即再考4次满分平均分可达到95,要达到95以上即需4+1=5次.
9.(280)
第一堆中钱数必为5+2=7元的倍数;第二堆钱必为20元的倍数(因至少需5个贰元与2个伍元才能有相等的钱数).但两堆钱数相等,所以两堆钱数都应是7×20=140元的倍数.所以至少有2×140=280元.
10.(25)
转换一个角度思考:当甲、乙相会时,甲、乙和狗走路的时间都是一样的. 30÷(3.5+2.5)=5(小时) 5×5=25(千米)
二、解答题: 1.
(1)在水中.
连结AP,与曲线交点数是奇数. (2)在岸上.
从水中经过一次岸进到水中,脱鞋与穿鞋次数和为2.由于A点在水中,所以不管怎么走,走在水中时,穿鞋、脱鞋次数和为偶数,则B点必在岸上.
2.1997不可能,2160不可能.2142能.
这样框出的九个数的和一定是被框出的九个数的中间的那个数的9倍,即九个数的和能被9整除.但1997数字和不能被9整除,所以(1)不可能.
又左右两边两列的数不能作为框出的九个数的中间一个数,即能被15整除或被15除余数是1的数,不能作为中间一个数.2160÷9=240,又240÷15=16,余数是零.所以(2)不可能.
3.(0场)
四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场.若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以只可能是甲、乙、丙各胜2场,此时丁三场全败.也就是胜0场.
4.只切两刀,分成三块重新拼合即可.
正方形面积为(2R)2=(2×3)2=36(cm2)
小升初数学综合模拟试卷4
一、填空题:
1.41.2×8.1+11×9.25+537×0.19=______. 2.在下边乘法算式中,被乘数是______.
3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍. 4.图中多边形的周长是______厘米.
5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______. 6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.
7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.
8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.
9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.
10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______. 二、解答题:
1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.
2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.
3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?
4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?
(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?
(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?