哈尔滨理工大学本科生毕业设计
1. 电源引脚
·Vcc:5V电压 ·GND:接地 2.外接晶体引脚
·XTAL1:接外部晶体振荡器的一端。当使用芯片内部时钟时,此脚用于外接石英晶体振荡器和微调电容;当使用外部时钟时,对于HMOS单片机,此引脚接地;对于CMOS单片机,此引脚作为外部振荡信号的输入端。
·XTAL2:接外部晶体振荡器的另一端,当使用芯片内部时钟时,此脚用于外接石英晶体振荡器和微调电容。当使用外部时钟时,对于HMOS单片机,此引脚接外部振荡源;对于CMOS单片机,此引脚悬空不接。
89S51晶体振荡器频率可在6MHZ~40MHZ之间选择,常选6MHz或12MHz的石英晶体。电容的值没有严格要求,但其取值对振荡器的频率输出的稳定性、大小、振荡电路起振速度稍有影响,C1、C2可在20pF~100pF之间选择。当外接晶体振荡器时,电容可选30pF±10pF;外接陶瓷振荡器时,电容可选40pF±10pF。 3. 控制信号或与其它电源复用引脚
RST/VPD:复位端。当输入的复位信号持续2个以上机器周期(个晶体振·
荡周期)高电平即为有效,用于完成单片机的复位初始化操作。正常工作时,此脚电平应 ≤ 0.5V。
在VCC发生故障、降低到电平规定值掉电期间,此引脚可接备用电源VPD(电源范围5V±0.5V),由VPD向内部RAM供电,以保持内部RAM中的数据。
·地址锁存使能。ALE(Address Latch Enable);PROG(Program) ALE/PROG:
ALE/PROG为CPU访问外部程序存储器或外部数据存储器提供地址锁存信号,将低8位地址锁存在片外的地址锁存器中。ALE/PROG引脚第二功能,对片内 Flash编程,为编程脉冲输入端。
PSEN:·(Programmer Saving ENable),外部程序存储器读选通信号。 在读外部程序存储器时有效(低电平),以实现外部程序存储器单元的读操作。在访问外部数据存储器、访问内部程序存储器时PSEN无效。
EA/VPP:·(Enable Address/Voltage Pulse of Programming),访问程序存储控制信号。当EA/VPP=“0”时,表示读外部程序存储器。只读取外部的程序存储
哈尔滨理工大学本科生毕业设计
器中的内容,读取的地址范围为0000H~FFFFH(64KB),片内的4KB Flash 程序存储器不起作用。当EA/VPP=“1”时,表示对程序存储器的读操作是从内部程序存储器开始,并可延至外部程序存储器。在PC值不超出0FFFH(即不超出片内4KB Flash存储器的地址范围)时,单片机读片内程序存储器(4KB)中的程序,但当PC值超出0FFFH (即超出片内4KB Flash地址范围)时,将自动转向读取片外60KB(1000H-FFFFH)程序存储器空间中的程序。对于EPROM(或FLASH)型单片机,在EPROM编程期间,此引脚需加12.75V或21V的编程电压。 3.I/O口引脚
·P0口:P0口是一组8位漏极开路型双向I/0口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗转入端用。
·Pl口:P1是—个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电萌。
·P2口:P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流。
·P3口::①可以作为输入/输出口,外接输入/输出设备。②作为第二功能使用,每一位功能定义如表3.1 所示。
表3.1
哈尔滨理工大学本科生毕业设计
3.2 脉搏信号采集
目前脉搏波检测系统有以下几种检测方法:光电容积脉搏波法、液体耦合腔脉搏传感器、压阻式脉搏传感器以及应变式脉搏传感器。 3.2.1 光电传感器的结构及原理
近年来, 光电检测技术在临床医学应用中发展很快, 这主要是由于光能避开强烈的电磁干扰, 具有很高的绝缘性, 且可非侵入地检测病人各种症状信息。用光电法提取指尖脉搏光信息受到了从事生物医学仪器工作的专家和学者的重视。本系统设计了指套式的透射型光电传感器, 实现了光电隔离,减少了对后级模拟电路的干扰,结构如图2所示。
图3.2 透射式光电传感器图
传感器由发光二级管和光敏二极管组成, 其工作原理是: 发光二极管发出的光透射过手指,经过手指组织的血液吸收和衰减,由光敏二极管接收。由于手指动脉血在血液循环过程中呈周期性的脉动变化,所以它对光的吸收和衰减也是周期性脉动的, 于是光敏二极管输出信号的变化也就反映了动脉血的脉动变化。 3.2.2 信号采集电路
图3.3是脉搏信号的采集电路,U3是红外发射和接收装置,由于红外发射二极管中的电流越大,发射角度越小,产生的发射强度就越大,所以对R21阻值的选取要求较高。R21选择270Ω同时也是基于红外接收三极管感应红外光灵敏度考虑的。R21过大,通过红外发射二极管的电流偏小,红外接收三极管无法区别有脉搏和无脉搏时的信号。反之,R21过小,通过的电流偏大,红外接收三极管也不能准确地辨别有脉搏和无脉搏时的信号。当手指离开传感器或检测到较
哈尔滨理工大学本科生毕业设计
强的干扰光线时,输入端的直流电压会出现很大变化,为了使它不致泄露到U2B输入端而造成错误指示,用C8、C9串联组成的双极性耦合电容把它隔断[10]。
当手指处于测量位置时,会出现二种情况:一是无脉期。虽然手指遮挡了红外发射二极管发射的红外光,但是由于红外接收三极管中存在暗电流,会造成输出电压略低。二是有脉期。当有跳动的脉搏时,血脉使手指透光性变差,红外接收三极管中的暗电流减小,输出电压上升。但该传感器输出信号的频率很低,如当脉搏只有为50次/分钟时,只有0.78Hz,200次/分钟时也只有3.33Hz,因此信号首先经R22、C10滤波以滤除高频干扰,再由耦合电容C8、C9加到线性放大输入端。
图3.3信号采集电路
3.3 信号放大
按人体脉搏在运动后跳动次数达200次/分钟的计算来设计低通放大器,如图3.4所示。R23、C6组成低通滤波器以进一步滤除残留的干扰,截止频率由R23、C6决定,运放U2B将信号放大,放大倍数由R23和R27的比值决定。
哈尔滨理工大学本科生毕业设计
图3.4 放大电路
根据一阶有源滤波电路的传递函数,可得:
A(s)?V0(s)A0?
sV(s)i1?wc放大倍数为:A0?1?R231M?1??214 R274.7K截止频率为:f0?1?3.39Hz
2?R23C6按人体的脉搏跳动为200次/分钟时的频率是3.3 Hz考虑,低频特性是令人满意的。经过低通放大后输出的信号是叠加有噪声的脉动正弦波。
3.4波形整形电路
波形整形电路如图3.5所示,U2C是一个电压比较器,C11、R29构成一个微分器,U2A和C7、R32组成单稳态多谐振荡器,其脉宽由C7、R32决定。
该比较器的阀值电压可用R31调节在正弦波的幅值范围内,但是对R31的调节要求并不严格,因为U2C的输出信号经C11、R29的微分后总是将正、负相间的尖脉冲加到单稳态多谐振荡器U2A的反向输入端,不会造成很大的触发误差。
当有输入信号时,U2A在比较器输入信号的每个后沿到来时输出高电平,使C7通过R32充电。大约持续20ms之后,因C7充电电流减小而使U2A同相