些国际组织发射了资源遥感卫星(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。现在改用配备有高级计算机的图像边缘检测系统来判读分析首先提取出其图像边缘,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。
(2) 生物医学工程方面的应用,数字图像边缘检测在生物医学工程方面的应用十分广泛,而且很有成效。除了CT技术之外,还有一类是对阵用微小图像的处理分析,如红细胞、白细胞分类检测,染色体边缘分析,癌细胞特征识别等都要用到边缘的判别。此外,在X光肺部图像增强、超声波图像边缘检测、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像边缘分析处理技术。
(3)公安军事方面的应用,公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。目前己投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别(主要是汽车牌照的边缘检测与提取技术)都是图像边缘检测技术成功应用的例子。在军事方面图像边缘检测和识别主要用于导弹的精确制导,各种侦察照片的判读,对不明来袭武器性质的识别,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;
(4)交通管理系统的应用,随着我国经济建设的蓬勃发展,城市的人口和机动车拥有量也在急剧增长,交通拥挤堵塞现象日趋严重,交通事故时有发生。交通问题已经成为城市管理工作中的重大社会问题,阻碍和制约着城市经济建设的发展。因此要解决城市交通问题,就必须准确掌握交通信息。目前国内常见的交通流检测方法有人工监测、地埋感应线圈、超声波探测器、视频监测4类。其中,视频监测方法比其他方法更具优越性。
视频交通流检测及车辆识别系统是一种利用图像边缘检测技术来实现对交通目标检测和识别的计算机处理系统。通过对道路交通状况信息与交通目标的各种行为(如违章超速,停车,超车等等)的实时检测,实现自动统计交通路段上行驶的机动车的数量、计算行驶车辆的速度以及识别划分行驶车辆的类别等各种有关交通参数,达到监
6
测道路交通状况信息的作用。 1.4边缘检测中存在的问题与难点 1.边缘检测中存在的问题
边缘检测是图像处理和理解的基本课题之一,它的基本要求是检测精度高,抗噪能力强,不漏掉实际边缘,不虚报边缘,在有些应用中还要求具有高的定位精度。但做到这些比较困难。因为:1)实际图像都含有噪声,并且噪声的分布、方差等信息也都是未知的,而噪声和边
缘都是高频信号;2)由于物理和光照等原因,实际图像中的边缘常常发生在不同的尺度围上,并且每一边缘像元的尺度信息是未知的。因此,传统的边缘检测算法检测效果并不理想,表现在:1)在含噪图像中,边缘检测需要对图像先进行平滑去噪,但在平滑噪声时,很容易丢失图像的高频信息,处理的效果不理想。2)大多数边缘检测算子针对的都是阶跃边缘,但实际图像中多数还是斜坡边缘,虽然斜坡边缘是阶跃边缘特殊的表现形式,但由于斜坡边缘的特性,针对阶跃边缘的边缘检测算子难以得到好的检测效果。3)图像中的边缘通常产生在不同的尺度范围内,利用传统的单一尺度的算子是不可能同时正确检测出所有边缘的,需要利用多个不同尺度的边缘检测算子对各种不同尺度的边缘进行有效检测。4)好的边缘定位是边缘检测的一个要求,在有些应用中对定位的精度要求甚至达到亚像素级,然而,传统的边缘检测方法的定位精度一般只能达到像素级。 2.边缘检测的发展趋势
边缘检测的研究多年来一直受到人们的高度重视,从边缘检测研究的历史和现状来看,边缘检测的研究有几个明显的趋势:1)对原有算法的不断改进。2)新方法、新概念的引入和多种方法的有效综合运用。3)对特殊图像边缘检测的研究越来越得到重视。目前有很多针对立体图像、彩色图像、多光谱图像、合成孔径雷达图像、深度图像、纹理图像、超声图像、计算机断层扫描、磁共振图像、共聚焦激光扫描显微镜图像以及运动图像等特殊图像的边缘检测技术的研究。4)对图像边缘检测评价的研究和对评价系统的研究越来越得到关注。5)将现有的算法应用于工程实际中。
7
第2章 图像的边缘检测与提取
2.1 引言
物体的边缘是以图像局部的不连续性的形式出现的,例如,灰度值的突变,颜色的突变,纹理结构的突变等。从本质上说,边缘常常意味着一个区域的终结和另一个区域的开始。图像边缘信息在图像分布和人的视觉中都是十分重要的,是图像识别中提取图像特征的一个重要属性。
图像边缘检测和计算机视觉都是新兴学科分支,近几十年来,取得了许多重大的成果。随着研究的深入和应用的需要,新概念、新思想、新方法陆续产生,它们正朝着智能化、系统化的方向发展。而作为图像边缘检测和计算机视觉最基本的技术——图像边缘提取技术,也突破了其狭义的概念,成为一个内容丰富的领域。本论文工作的目的是探索和研究经典的图像边缘提取方法。
利用计算机进行图像边缘检测有两个目的:一是产生更适合人观察和识别的图像;二是希望能由计算机自动识别和理解图像。无论为了哪种目的,图像边缘检测中关键的一步就是对包含有大量各式各样景物信息的图像进行分解。图像的边缘是图像的最基本特征。所谓边缘(或边沿)是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合。边缘广泛存在于物体与背景之间、物体与物体之间、基元与基元之间。因此,它是图像分割所依赖的重要特征。
由于图像边缘是图像最基本的特征之一,往往携带着一幅图像的大部分信息。而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像边缘检测时所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。而边缘提取算法则是图像边缘检测问题中经典技术难题之一,它的解决对于我们进行高层次的特征描述、识别和理解等有着重大的影响;又由于边缘检测在许多方面都有着非常重要的使用价值,所以人们一直在致力于研究和解决如何构造出具有良好性质及好的效果的边缘检测算子的问题。在通常情况下,我们可以将信号中的奇异点和突变点认为是图像中的边缘
8
点,其附近灰度的变化情况可从它相邻像素灰度分布的梯度来反映。根据这一特点,提出了多种边缘检测算子:如 Robert算子、Sobel 算子、Prewitt 算子、Laplacian 算子,Canny算子等。这些方法多是以待处理像素为中心的邻域作为进行灰度分析的基础,实现对图像边缘的提取并已经取得了较好的处理效果。
边缘提取是图像边缘检测和计算机视觉等领域最基本的技术,如何准确、快速的提取图像中的边缘信息一直是这些领域的研究热点,随着此项技术研究的深入和整个领域的不断发展,边缘提取技术已经成为图像分割、目标识别、图像压缩等技术的基础。其理论意义深远,应用背景广泛,有相当的使用价值和理论难度。边缘提取算法的提出通常是面向具体问题的,普遍实用性较差。
物体的边缘是由灰度不连续性所反映的。经典的边缘提取方法是考察图像的每个像素在某个邻域内灰度的变化,利用边缘邻近一阶或二阶方向导数变化规律,用简单的方法检测边缘,即边缘检测局部算子法。众所周知,边缘是图像的基本特征,所谓边缘就是指周围灰度强度有变化的那些像素的集合,是图像分割、纹理分析和图像识别的重要基础。
图像的边缘是待识别类型之间的界线,它是指图像中像素单元灰度有阶跃变化或屋顶状变化的那些像素单元的集合。边缘检测在图像分割、纹理特征提取、形状特征提取和图像识别等方面起着重要的作用。图像边缘对图像识别和计算机分析十分有用。边缘能勾划出目标物体,使观察者一目了然;边缘蕴含了丰富的内在信息,是图像识别中抽取图像特征的重要属性。从本质上说,图像边缘是图像局部特性不连续性的反应,它标志着一个区域的终结和另一个区域的开始。边缘提取首先检出图像局部特性的不连续性,然后再将这些不连续的边缘像素连成完备的边界。图像中灰度变化剧烈的区域即强度的非连续性对应着边缘。边缘提取就是既要检测出强度的非连续性,又能确定它们在图像中的精确位置。在图像中边缘区域的灰度在空间上的变化形式一般可分为三个类型:阶跃型、房顶型和凸缘型,如图2.2所示。
9
阶跃型 房顶型 突圆型
图2.1 边缘灰度变化
在图像中边缘有方向和幅度两个特性。沿着边缘走向的灰度变化平缓,而垂直于边缘方向的像素变化剧烈。在边缘上灰度的一阶导数幅度较大,而二阶导数在边缘上的值为零,其左右分别为一正一负两个峰。因此,利用梯度最大值或二阶导数过零点提取边界点成为一种有利的手段。
2.2 边缘检测与提取过程
边缘是图像最基本的特征,所谓边缘就是指周围灰度强度有反差变化的那些像素的集合,是图像分割所依赖的重要基础,也是纹理分析和图像识别的重要基础。理想的边缘检测应当正确解决边缘的有无、真假、和定向定位,长期以来,人们一直关心这一问题的研究,除了常用的局部算子及以后在此基础上发展起来的种种改进方法外,又提出了许多新的技术。
要做好边缘检测初步准备条件如下:
第一,清楚待检测的图像特性变化的形式,从而使用适应这种变化的检测方法。
第二,要知道特性变化总是发生在一定的空间范围内,不能期望用一种检测算子就能最佳检测出发生在图像上的所有特性变化。当需要提取多空间范围内的变化特性时,要考虑多算子的综合应用。
第三,要考虑噪声的影响,其中一个办法就是滤除噪声,这有一定的局限性;再就是考虑信号加噪声的条件检测,利用统计信号分析,或通过对图像区域的建模,而进一步使检测参数化。
第四,可以考虑各种方法的组合,如先找出边缘,然后在其局部利用函数近似,通过内插等获得高精度定位。
第五,在正确检测边缘的基础上,要考虑精确定位的问题。经典
10