第一章 labACT自控/计控原理实验机构成及说明
该显示界面的下方有一个“显示方式”选择框,提供了示波和X-Y两种方式。当需要是时域显示方式时,应选择框内的示波方式选项(通常在弹出示波器界面时,默认为示波方式)。 (1)信号幅值测量
①信号幅值测量:在显示界面的左右各有一条滑竿标尺,用户点住滑竿标尺上、下移动到显示界面中需标定的点,此时滑竿的最右侧的黄色方块上显示的数据为当前测量点的幅值,见图2-2-1的4.34V和2.5V数据显示。在Y轴上两条滑竿之间(在显示界面的左侧)的黄色方块中显示的数据,为两个测量点的幅值差,见图2-2-1上的Δv=1.84V。
②电压量程:控制波形Y轴显示的放大/缩小。
③零点控制:控制波形显示的Y轴位移。 (2)信号时间测量
① 移动波形
在运行开始到停止。示波器可能已采样了多幅波形,因此用户首先必须点击显示界面下方的‘前一屏’或‘后一屏’来获取显示所需的画面,然后再点击中间的‘微调按钮’来调节波形至最佳测量状态。
② 压缩/扩展波形
在显示界面的下方有一个‘时间量程’选择框,在框中‘×2’表示波形压缩了2倍,‘×4’表示波形压缩了4倍,该功能适用于观察频率低、周期长的信号,例如观察时间常数大的积分信号输出;在框中‘/2’表示波形放大了2倍,‘/4’表示波形放大了4倍,该功能适用于观察频率较高的信号,例如观察微分信号输出、阶跃输出的上升时间等。
③ 信号时间的测量 当信号在显示界面处于最佳测量状态后,用户可以点住显示界面上下各一条的滑竿,左、右移动到波形需标定的点的位置,在X轴上两条滑竿之间的黄色方块中显示的数据,为两个X轴上标定点的时间差,见图2-2-1上的Δt=1.200S。 2。示波器的相平面显示(X-Y)使用
在示波器的时域显示界面下方的‘显示方式’选择框中,如用户选中‘X-Y’选项,则虚拟示波器将提供相当于真实示波器中的X-Y选项,即可实现自动控制原理实验中的‘相平面分析’实验。
实验使用:运行LABACT程序,选择‘自动控制 / 非线性系统的相平面分析’菜单下的相应实验项目,就会弹出相应的虚拟示波器界面,
在运行中,如果用户在‘显示方式’选择框中,选中‘示波’选项,示波器将转为时域显示方式。这样用户可以在同一界面上方便地看到系统的时域显示和相平面显示。可按刷新按钮进行波形更新。
3.示波器的幅频/相频/幅相特性显示使用
该方式专为第三章自动控制原理实验第3.2节〈线性控制系统的频率响应分析〉设计的。
在实验中欲观测实验结果时,应运行LabACT程序,选择自动控制 / 线性控制系统的频率响应分析-实验项目,再分别选择一阶系统或二阶系统就会弹出‘频率特性扫描点设置’表,在该表中用户可根据自己的需要填入各个扫描点(本实验机选取的频率值f,以0.1Hz为分辨率),如需在特性曲线上直接标注某个扫描点的角频率ω、幅频特性L(ω)或相频特性φ(ω),则可在该表的扫描点上小框内点击一下(打√)。‘确认’后将弹出虚拟示波器的频率特性界面,点击开始,即可按‘频率特性扫描点设置’表规定的频率值,实现频率特性测试。
测试结束后(约十分钟),可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的闭环对数幅频、对数相频特性曲线(伯德图)和幅相曲线(奈奎斯特
第一章 labACT自控/计控原理实验机构成及说明
图),点击停止后,将停止示波器运行。
用户如选择了二阶系统,则虚拟示波器上先弹出闭环频率特性界面,点击开始,待实验机把闭环频率特性测试结束后,再在示波器界面左上角的红色‘开环’或‘闭环’字上双击,将在示波器界面上弹出‘开环/闭环’选择框,点击确定后,示波器界面左上角的红字,将变为‘开环’然后再在示波器界面下部‘频率特性’选择框点击(任一项),在示波器上将转为‘开环’频率特性显示界面。
在 ‘开环’频率特性界面上,亦可转为‘闭环’频率特性显示界面,方法同上。 在频率特性显示界面的左上角的红色‘开环’或‘闭环’字表示当前界面的显示状态。可进行以下各项线性控制系统的频率响应分析:
? 被测系统某个频率点的L、?、Im、Re等相关数据测量: ? 闭环系统谐振频率?r,谐振峰值L(?r)等相关数据的测量: ? 开环系统的幅值穿越频率?c、相角裕度?等相关数据的测量: 4.示波器的计算机控制显示使用
示波器的计算机控制显示方式可以在示波器显示界面上进行参数的设置和修改,该界面显示方式用于PID算法、最少拍控制、大林算法、温度控制等实验。注意:分析波形必须先停止。
1) 最少拍控制系统实验
在实验中欲观测实验结果时,只要运行LABACT程序,选择微机控制菜单下的最少
拍控制系统----有纹波实验项目,就会弹出虚拟示波器的界面,确保实验机处于联机状态,点击开始后将自动加载相应源文件,此时可选用虚拟示波器(B3)单元的CH1、CH2测孔测量波形。
该实验显示界面的下边“计算公式”栏中有Ki、Pi ,7个控制参数,界面上方有采样周期T,点击开始后,即可使实验机按照新的控制参数运行。
2)数字PID控制实验
在实验中欲观测实验结果时,只要运行LABACT程序,选择微机控制菜单下的数字PID控制实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,运行程序。
该实验显示界面的右边“PID系数”栏中有Kp、TI、TD 3个控制系数,界面上方有采样周期T,点击‘发送’后,即可使实验机按照新的控制参数运行。
3)温度闭环控制
在实验中欲观测实验结果时,只要运行LABACT程序,选择控制系统菜单下的温度闭环控制实验项目,就会弹出温度示波器的界面。点击开始后将自动加载相应源文件,然后再点击发送键,将运行;然后设定‘温度’参数、积分量阀值和控制系数PID后,点击发送,即可实现温度闭环控制。
该实验显示界面的右边“PID系数”栏中有Kp TI、TD 3个控制系数,积分量
K|?e(j)|阀值E0点击‘发送’后,即可使实验机按照新的控制系数和设定参数运行。
j?0冷却:在运行中,改变‘温度’参数为‘1℃’后,再次点击“发送”键将启动风扇转动,进行冷却。5.虚拟示波器的截图
在虚拟示波器界面上第二排图标工具栏左起第22个(黄色问号
第一章 labACT自控/计控原理实验机构成及说明
的右边)加上了示波器的截图按扭,截图后需要命名保存,默认则保存到C盘AEDK目录下,格式为BMP图象文件,可以双击直接查看,方便老师学生直接将保存的图,粘贴到文档之中。
第三章 自动控制原理实验
3.1 线性系统的时域分析 3.1.1 典型环节的模拟研究
一. 实验目的
1. 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达
式 2. 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的
影响
二.实验内容及步骤
观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。
改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告
运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。具体用法参见用户手册中的示波器部分。 1).观察比例环节的阶跃响应曲线
典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路
传递函数:G(S)?UO(S)Ui(S)?KK?R1R0 ; 单位阶跃响应: U(t)?K
实验步骤:注:‘S ST’用短路套短接!
(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT),作为系统的信号输入(Ui);该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。 ② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。 ③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V(D1单元右显示)。 (2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。
(a)安置短路套 (b)测孔联线 1 模块号 A5 跨接座号 S4,S12 第一章 labACT自控/计控原理实验机构成及说明 1 2 3 信号输入(Ui) B5(OUT)→A5(H1) 示波器联接 ×1档 A5(OUTB)→B3(CH1) B5(OUT)→B3(CH2) ‘S-ST’ 2 B5 (3)运行、观察、记录:
打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V阶跃),观测A5B输出端(Uo)的实际响应曲线。示波器的截图详见虚拟示波器的使用。 实验报告要求:按下表改变图3-1-1所示的被测系统比例系数,观测结果,填入实验报告。
R0 200K 50K R1 100K 200K 100K 200K 输入Ui 4V 4V 2V 1V 比例系数K 计算值 测量值 0.5 1 2 4 2).观察惯性环节的阶跃响应曲线
典型惯性环节模拟电路如图3-1-2所示。
图3-1-2 典型惯性环节模拟电路
传递函数:G(S)?UO(S)Ui(S)?K1?TSK?R1R0T?R1C 单位阶跃响应:U0(t)?K(1?e?tT)
实验步骤:注:‘S ST’用短路套短接!
(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT),作为系统的信号输入(Ui);
该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。 ② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V(D1单元右显示)。 (2)构造模拟电路:按图3-1-4安置短路套及测孔联线。 (3)运行、观察、记录:
打开虚拟示波器的界面,点击开始,
按下信号发生器(B1)阶跃信号按钮时(0→+4V阶跃),观测A5B输出端(Uo)响应曲线,等待完整波形出来后,移动虚拟示波器横游标到输出稳态值×0.632处,得到与输出曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到输出曲线的交点,量得惯性环节模拟电路时间常数T。
实验报告要求:按下表改变图3-1-2所示的被测系统时间常数及比例系数,观测结果,填入实验报告。
R0 R1 C 输入Ui 比例系数K 计算值 测量值 惯性常数T 计算值 测量值 第一章 labACT自控/计控原理实验机构成及说明
200K 50K 200K 100K 200K 1u 2u 1u 4V 2V 1V 1 1 2 4 0.2 0.4 0.1 0.2 3).观察积分环节的阶跃响应曲线
典型积分环节模拟电路如图3-1-3所示。
图3-1-3 典型积分环节模拟电路
传递函数:G(S)?UO(S)Ui(S)?1TSTi?R0C 单位阶跃响应:U0(t)?1Tit
实验步骤:注:‘S ST’用短路套短接!
(1)为了避免积分饱和,将函数发生器(B5)所产生的周期性矩形波信号(OUT),代替信号发生器(B1)中的人工阶跃输出作为系统的信号输入(Ui);该信号为零输出时,
将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
(注:为了使在积分电容上积分的电荷充分放掉,锁零时间应足够大,即矩形波的零输出宽度时间足够长! “量程选择”开关置于下档时,其零输出宽度恒保持为2秒!) ③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 1V(D1单元右显示)。 (2)构造模拟电路:按图3-1-3安置短路套及测孔联线。
(3)运行、观察、记录:
打开虚拟示波器的界面,点击开始,观测A5B输出端(Uo)响应曲线,等待完整
波形出来后,点击停止,移动虚拟示波器横游标到0V处,再移动另一根横游标到ΔV=1V(与输入相等)处,得到与输出曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到输出曲线的交点,量得积分环节模拟电路时间常数Ti。
实验报告要求:按下表改变图3-1-3所示的被测系统时间常数,观测结果,填入实验报告。
R0 200K 100K C 1u 2u 1u 2u 1V 输入Ui 积分常数Ti 计算值 测量值 4).观察比例积分环节的阶跃响应曲线
典型比例积分环节模拟电路如图3-1-4所示.。