第三节、两角和差及倍角公式(一)
[基础知识]
一、两角和差的三角函数公式
sin(???)?_______________________cos(???)?_______________________sin(???)?_______________________cos(???)?_______________________tan(???)?_______________________tan(???)?_______________________【变形公式】tan??tan??______________________tan??tan??_____________________tan(??)?_______________________ tan(??)?______________________44[例题讲解]
1.计算sin163?sin223?sin253?sin313的值
2. tan(???)?
3.(1)求tan20?tan25?tan20?tan25的值
00000000??2?1?,tan(??)?,求tan(??)的值 54441+tan150tan(???)?tan??tan?(2)化简 (3)求的值
tan?tan(???)1-tan150
二、二倍角公式 (一)、二倍角公式
sin2??________________?_______________cos2??________________ ?________________ ?_________________?______________ tan2??______________注:上述公式为“升幂降角”
(称此三式为“万能公式”)1.(1)化简:4sin?cos?cos?cos?
442
(2)化简(????2tan??tan)2?(1?) ?2tan2?tan21
(1)化简:(cos2.
?+sin)(?cos-sin)(?1+tan??tan) 22222????1?tan? (2)化简:tan?1?tan?tan?(二)、二倍角变形公式
sin2??______________________cos2??____________________(“升角降幂”)1+cos2??____________________1-cos2??__________________[例题讲解]
5??sin2?cos2的值 1.求:1212
(1+sin?+cos?)?(sin-cos)22 ??(0,?)的值 2.求
2+2cos?
??(三)、半角公式
sintan?2?_______________cos?2?_______________?2
?_______________?_______________?________________1.求sin150和cos150的值
2.已知sin??
45???,???3?,求cos及tan的值 5222[巩固练习]:
1.已知?,?均为锐角且cos(???)?sin(???),则tan??____
132.若cos(???)?,cos(???)?,则tan?tan??____
55
3.若cos2?sin(??)4???2,则cos??sin??_______ 24.若sinx?tanx?0,化简1?cos2x?_____
5.化简
sin2?1??_____
1?cos2?tan?6.化简:2?cos2?sin21?________
1?sin2??sin??cos2?7.化简:?________
2sin?cos??cos?8.化简(
?tan)?(1?tan2?)?________ ?2tan21?9.化简:sin2??sin2??2sin?sin?cos(???)
(sinx?cosx?1)?(sinx?cosx?1)10.化简:
sin2x
12 11.化简:??2tan(??)?sin2(??)442cos4??2cos2??
12.证明:1?sin2?
1?4?tan?2tan2cos2?
1?sin4??cos4?1?sin4??cos4?13.求证:?
2tan?1?tan2?
思考题?11.化简sin2?sin2??cos2?cos2??cos2?cos2?2
2.已知:tan(???)?2tan?,求证:3sin??sin(??2?)