一台660MW的单元机组配有两台空气预热器,每台直径14.6m,重约500吨。传热元件的表面积总共约100,000平方米。燃煤电厂典型的温度应是烟气进口335℃,出口120℃,空气进口32℃,出口290℃。空气预热器的性能主要表现在传热效率、压损以及空气对烟气侧的泄漏上。 ?
前两项能被理想的表示为一组无量纲数:雷诺数、普朗特数和斯坦顿数的关系。通过实验室规模试验可以确立每种空气预热器组件的关系式。这就可以进行优化设计,估算新开发部件的几何性能,以及评估由于灰污问题而需使用替代部件的效果。 2.6 锅炉在线吹灰
是否高效的燃烧化石燃料来生产电力很大程度上取决于蒸汽产生设备对煤燃烧产物(煤灰)的适应性。吹灰器用来吹扫沉积在锅炉受热面上的积灰来保证有效地向蒸汽传热。在英国吹灰介质大部分用蒸汽而在美国一般用空气。 2.7 能量守恒 ? ?
由热力学第一定律,蒸汽发生器系统的能量平衡如下所述:
因为蒸汽发生器应在稳态下检测,这样积累的能量就为0,其方程为: 进入系统的能量 - 离开系统的能量 = 系统内部能量的积累 进入系统的能量 = 离开系统的能量
进入系统的能量就是进入系统的质量流所携带的能量,以及辅助设备的驱动能量。离开系统的能量就是离开系统的质量流所携带的能量,以及通过蒸汽发生器表面传递给环境的能量。 ?
效率为输出能量和输入能量的比值,以百分数的形式表示: 当输入能量定义为燃料释放的所有能量时,所得的效率通常称为燃料效率 2.7.1 效率-能量平衡法(反平衡法) ?
在能量平衡法中,采用能量损失和外来热量来计算效率。能量平衡法是确定效率的首选方法。因为测量误差仅影响着各项损失而不影响总能量,所以它一般情况下比输入-输出法更精确。例如:如总损失占总输入能量的10%,则1%的测量误差仅会导致0.1%的效率误差,而在测量燃料流量中1%的误差将会导致效率的1%的误差。
能量平衡法的另一个优点就是可以确认两次效率测试结果不同的原因,另外,对于诸如燃料分析数据等试验条件的变化,该方法可以容易的将效率修正到基准工况或保证工况。 2.7.2 效率-输入-输出法(正平衡法)
根据输入-输出法计算的效率是基于测定燃料量和计算输出能量所必需的锅炉汽水侧参数。该方法计算的效率的不确定度直接与燃料测量、样本燃料分析和锅炉输出能量求取等的不确定度成正比。所以,要获得可靠的结果,在精确测量上述各项时必须格外谨慎。
第三章 蒸汽轮机
3.1 引言
蒸汽轮机是最重要的涡轮发动机之一,是发电领域的主要原动机。本文简单讨论了作为蒸汽轮机发电厂部件之一的蒸汽轮机的作用。
对于一个简单的蒸汽轮机发电厂,第一个部件就是把蒸汽提高到汽轮机所需压力和温度的蒸汽锅炉。蒸汽锅炉接受经过不同回热和热回收装置提高了温度的给水。在大多数电厂中,采用了过热蒸汽;大型电
16
厂中,蒸汽在汽轮机的一些级中膨胀后,要经过一次或两次再热。
过热蒸汽经过调节阀进入蒸汽轮机。蒸汽轮机总是多级汽轮机,根据汽轮机容量的大小采用一个或多个缸。
在汽轮机中膨胀后的蒸汽在凝汽器中以低压凝结(0.0035 到 0.007 MPa)。凝结水以及抽汽用泵打入锅炉。
3.1.1 蒸汽轮机的类型 记书上
3.1.2 冲动式汽轮机
冲动式汽轮机是指在转子中没有流体静压头改变的汽轮机。转子叶片仅仅引起能量的传递而没有任何能量的转变。由压能转变为动能或动能转变为压能的能量转换仅仅发生在静叶片中。如在冲动式汽轮机中,高速流体的动能传递到转子上仅仅由于作用在转子上的流体冲动力。图3-1给出了典型的冲动级速度三角形图。动叶出口蒸汽的相对速度(W2)小于动叶入口的相对速度(W1)。这表示了在动叶中发生了动能向机械功的转化。由于在冲动式汽轮机中转子叶片通道不会引起流体的任何加速,在叶片表面由于附面层的增加引起流体分离的机率要大一些。由此,冲动式汽轮机中转子叶片通道的损失较大,导致了较低的级效率。
3.1.3 反动式汽轮机
涡轮机械级的反动度定义为转子中发生的压头改变与整级的全部压头改变之比。
在转子叶片通道和静子叶片通道都有压头改变的涡轮机或级称作为反动式涡轮机或反动级。其中,在静叶和动叶中都有能量的转换。转子上既有能量传递又有能量转变。因此在反动式汽轮机中,由于流体的连续加速及较低的损失,它的效率应当高一些。
反动度为50%或一半的涡轮机有一些特殊的特点。反动度为50%的轴流式涡轮机和压缩机转子和静子上的叶片对称。对于反动度为50%的级,可看出它的出口和入口速度三角形也是对称的。图3-2给出了典型的反动级的速度三角形。动叶出口的蒸汽相对速度(W2)大于动叶入口的蒸汽相对速度(W1):这是由于动叶的焓降导致通过动叶的速度增加。 3.1.4 多级汽轮机
后面可以看到,当转速给定时,在涡轮机械的一级中,流体能量水平的改变是有限的。这对于涡轮机、压缩机、泵和吹灰器是一样的。因此,在能量水平改变很大的应用中,采用了多级。
在多级汽轮机中,可仅采用冲动级或采用反动级或冲动级和反动级的组合。冲动式汽轮机可采用许多压力级承担大的压降或许多速度级承担高的动能。还可同时采用速度级和压力级。在一定的压缩机中,同一个机械上采用了轴向流动的级和静向流动的级是有意义的。不同的级可安装在一个或多个轴上。
在大型汽轮机中,锅炉出口和凝汽器入口的蒸汽压差非常大。如果汽轮机中只有一个级,那么就需要采用一个高转速的直径很大的转子,这不仅会使制造困难,而且会引起严重的强度和支承问题。
一般说来,一个多级蒸汽轮机基本由下面几部分组成:
(1) 汽缸,为了便于装配和拆卸,通常汽缸在水平中分面分开为两半,这两半由螺栓连接,用于支承静止叶片系统。
(2) 转子,转子上有动叶片安装在叶轮上,以及还有叶轮。
17
(3) 轴承箱 置于汽缸中,用于支承轴
(4) 调节系统 依靠控制蒸汽流量,调节汽轮机转速和出力,还有用于轴承润滑的油系统和一组安全装置
(5) 联轴器 用于转子的连接,并与发电机相连;
(6) 管道 与汽缸入口蒸汽供给管道、汽缸出口排汽系统相连。 3.2 汽缸结构
汽轮机汽缸实质上是一个压力容器,在水平中心线的两端支撑它的重量。设计中要求在汽缸的横断面上,能承担管道的应力,而且沿汽缸的长度方向,要有一定的刚性从而维持汽轮机动静部分准确的间隙。
汽缸由于内部通道的需要使得其设计复杂。所有的汽缸都从水平中分面分开,从而使转子能放入汽缸内和汽缸装配为一个整体。在汽缸的水平结合面上,设置了巨大的法兰和螺栓用以承担压力。相比汽缸的其余部分,相对厚重的法兰对温度变化的反应较慢,导致了不同的膨胀率,产生了温度应力和变形,尽管这些在汽轮机中已采用了法兰加热蒸汽使其减至最低程度。轴封汽室和蒸汽出入通道使得应力进一步复杂。
高压和中压汽缸都是铸造结构,并且在横截面上采用圆形结构从而使得应力达到最小。法兰、螺栓、蒸汽出入通道和其他特征尽可能布置成对称结构,从而减少热不对称和由此引起的变形。低压汽缸可以采用装配结构或装配与铸造组合的结构。
和所有的压力容器一样,汽缸在制造完后要进行液压试验检查设计的完善性,液压试验要进行最高工作压力150%的压力试验。 3.2.1高压汽缸
许多现代汽轮机,蒸汽压力超过10MPa并且功率大于100 MW,,采用了双层缸结构的高压汽缸。这是因为高压缸既要承担热和压应力,而又能灵活运行,这时设计单层缸结构是困难的。对于双层缸结构,缸间充满了处于排汽参数的蒸汽,从而使得每层缸都能设计成承担小温差和小压差的结构。在双层缸间靠近排汽端设置了挡板,这个挡板是内缸铸件的一部分。挡板向外延伸几乎达到外缸,但没有与外缸封住。高压缸的紊流排汽在挡板的作用下排入排汽管道,避免冷却内缸;这减小了内缸进汽端的温差及由此引起的应力。从高压缸进汽端内缸和转子间轴封泄漏的蒸汽用管子排向高压缸排汽处,从而使得双层缸间充满了处于排汽状态的蒸汽,并且通过外缸轴封泄漏在双层缸间维持小流量的蒸汽流动。
较小的压差可以采用较薄的汽缸,这一点以及双层缸结构的较大的表面积,使得汽轮机在启动时能较快的暖机。另外薄汽缸还易于铸造,并且可能有较少的缺陷。
在一些汽轮机中,采用了反向流叶片,其中蒸汽在其膨胀过程中的某处,从缸间返回以相反的方向继续流过最后的级。这种布置导致了较高的缸间压力和温度,在外缸应力增加的代价下减少了热内缸的应力。另外这种结构还使得以缸间参数抽汽的抽汽口结构简单,并且减少了高压转子的净推力。
在一些现代汽轮机中,为了进一步减少热内缸的应力以及热变形,采用了三层缸结构,内缸置于一个没有水平结合面的筒状套筒中,(这种)内缸应力小,可以做得相对薄,这样法兰也不厚,而包着它的筒状汽缸应力相对高。然而,由于筒状汽缸没有法兰,厚度均匀,因此即使相对薄,仍可承担(一定的)应力。
18
三层缸的这种形式,其中一个缺点是在装配和拆卸高压汽缸时麻烦。在装配中,需要把转子装入内、外下缸中,之后把内上缸装配好,然后把转子和内缸一块吊起,置于一个特殊的夹具上,使得筒状汽缸穿过。套好后,放下置于外缸的下半部分上,最后把上半外缸扣上即可。
蒸汽进汽管道通过外缸,将蒸汽送入到内缸的进汽部分。进汽部分由内缸的一部分形成,这样确保入口蒸汽不直接与转子接触,而是必须首先流过喷嘴和第一列动叶栅。
当主蒸汽温度超过538℃时,有时会采用由耐热合金钢制造的单独喷嘴室结构,这样可以避免汽缸与最高温度的蒸汽接触。这种单独喷嘴室结构取代了进汽部分,把蒸汽从入口管道送入第一级喷嘴。
一些国外机组采用喷嘴调节代替了节流调节。对于喷嘴调节,汽轮机的进汽部分分成几部分,每部分由顺序开启的调节阀控制,这样导致了更加复杂的铸造结构和强度要求更高的第一级动叶片。
静叶片支撑在隔板上,隔板由靠近水平结合面和垂直中分线的键支撑和导向,从而允许同心膨胀。 图3-3中高压缸的特征包括:双层缸,叶片支撑在内缸的隔板上,两个进汽管道对称布置,底部有两个抽汽管道,缸间有挡板,缸间靠近排汽端有键,外缸的两端都有立销,进汽管道上有热衬套,转子汽缸间有轴封。 3.2.2中压汽缸
现代再热机组中,设计中压缸时考虑的因素和高压缸相似,进入中压缸的蒸汽温度和高压缸相同,压力却低于高压缸压力。这使得中压缸可以薄点。一般而言,大于300MW功率的机组至少有一部分为双层缸支承前几级,之后的级由持环支持。内缸和持环都减少了作用在外缸上的压力和温度,也使得外缸的型线光滑,这使外缸设计和制造简单,热性能好。持环(的结构)使得汽缸的设计有较大的灵活性,因为当叶片改变时,不需要改变主要的汽缸,而且一个汽缸的设计能满足级的不同布置方式。
中压汽缸常为双流设计,并且在现代大型汽轮机上常常如此。采用单流还是双流主要根据叶片的设计和效率来决定,但是双流汽缸还有取消高压端轴封的优点。和高压汽缸一样,中压汽缸转子在进汽处要避免与高温蒸汽接触;中压汽缸上设有导流环结构,导流环将入口蒸汽引至喷嘴,同时在邻近转子的导流环中心还通有温度较低的高压缸排汽。导流环单独支撑在内缸的键上,或支持在第一级喷嘴内部。
在中压缸的两个反向流中,叶片略有不同,导致两端的压力不同,从而部分内缸外形成了一股冷却汽流。这使得内缸外和螺栓的温度较低,从而可以采用小直径的螺栓。
图3-4中压缸的特征有:中间采用内缸,两端为持环结构,外缸上部有四个排汽口,底部有两个抽汽接口,进汽管道上设有热衬套,保护转子中心的导流环支撑在第一级喷嘴上,外缸的两端设有立销,外缸和转子之间有轴封。 3.2.3低压汽缸
低压汽缸常常是双层缸结构,其中内缸上有隔板支撑,抽汽和抽水接头,外缸将排汽引导至凝汽器并且为内缸提供结构上的支撑。然而,低压缸的结构并不常常如此,尤其是背篮式凝汽器,其对应的低压缸为单层缸结构。形体大的低压外缸以及它们所承受的低压负载使得低压缸尽可能采用装配式结构而不是铸造结构。更加复杂的内缸基于经济性考虑可采用装配式或铸造式。所有汽缸都采用螺栓连接它们的水平结合面。对于一个典型的低压汽缸,它的特征包括:装配式内缸、外缸;内缸上有抽汽口,排汽处有导叶,轴封支持在轴承上并且外缸上有膨胀节连接。 3.3 汽轮机转子和联轴器
19
3.3.1 转子结构类型
在大型汽轮发电机组上,采用了四种不同类型的转子结构: ? 整锻转子,其中叶轮和轴由一个锻件锻造而成(图. 3-5 (a))。
? 套装轮盘转子,由分别锻造好的钢轴和钢制轮盘组成,其中钢制轮盘通过冷缩配合套装在钢轴上,并且利用键连接和定位(图.3-5 (b))。
? 鼓形转子,由实心或空心锻件制造而成(图. 3-5 (c) and 3-5 (d))。
? 焊接轮盘转子,这类转子在英国并不常见,有用于低压转子上的方式。在国外的应用中,包括高压和中压转子采用了这种类型。
由于各种各样的原因,四种类型的转子中,优先采用整锻转子,但是当锻件尺寸超过锻造能力时,采用了套装轮盘结构。目前,英国设计的660 MW机组全部采用了整锻转子。
为了避免运行中的问题和疲劳裂纹,套装转子在冷缩配合和定位时需要非常仔细。虽然轮盘可能便于进行无损检测,但是整锻转子的无损检测能力已发展到能满足所有要求的程度。对于采用整锻转子的低压转子,有更好的刚性,从而有更好的动态性能。660 MW机组几乎无一例外的采用了这种结构的转子,并且试验结果很好。
原来在实践中,沿着锻件轴心方向钻孔得到试验材料,从而可用来验证锻造质量。但是随着锻造技术和材料性能的提高,目前在一些设计中已经取消了中心孔结构。
焊接转子的优点是锻件尺寸小,但需要有高的整体焊接技术,一些缺乏大型锻造能力的国家采用了焊接转子结构,他们已成功地制成焊接高、中和低压转子,在英国,只有有限数量的焊接低压转子。
由中空柱体制成的高温鼓形转子,与短轴连接,易于产生不同的蠕变。在现在的设计中已由整锻鼓形转子取代。受末级叶片设计的限制,双流汽缸取代了高压缸所采用的单流设计。对于660MW机组的设计,中、低压缸的标准设计是采用双流设计。对于单流高压缸,在某种程度上,需要采用平衡活塞来平衡轴向推力,从而减少推力轴承负荷,尤其是反动式机组(动叶两端压降大)需采用面积大的平衡活塞。
相反,相比反动级设计,采用冲动级的高压汽轮机转子,它的叶片节距直径降低。另外由于轴向推力更小,仅需要非常小的平衡活塞。 3.3.2 转子材料
没有对应材料的发展,蒸汽轮机设计领域的发展是不可能的。高温下有好的抗蠕变性能的合金钢的发展以及有好的机械及高断裂韧性的其他合金钢的发展,是冶金领域重大成就的一个方面。另外生产能够在高温和低温下都适用的组件,验证了炼钢技术的进步。这些组件有很大的物理尺寸,而且有能够满足严格的内部缺陷要求的一致的材料性能。
高温转子既要求蠕变强度、断裂强度,还要求一定的延展性。利用锻造的铬钼钒钢制造的转子能满足这些要求。铬钼钒合金刚是一种铁素体材料,能够提供可能最好的蠕变性能。
对于低温转子,主要的要求是有相对高的伸张强度和高的韧性。
由于3.5镍铬钼钒整锻转子锻件避免了套装转子冷缩配合时的复杂性,所以目前的转子采用了这种结构。对于套转低压转子,它的轴和轮盘都采用了镍含量高达3.5%的镍铬钼钒合金钢;对于大型整锻转子,为了获得整锻转子所必需的伸张性能,也首选这种合金钢材料。对于采用一系列实心轮盘组成的装配式
20