热能与动力工程专业英语第1,2,3,4,7,8,9章译文(6)

2019-06-17 19:55

1%铬含量的钢制转子仅限于在带有调节级的高压汽轮机中使用,因为调节级有效地降低了与转子主要部分直接接触的蒸汽温度。如果温度更高,和对于没有调节级的汽轮机设计,现在需要采用12%铬含量的钢制转子。

中压汽轮机

所有的汽轮机制造商都保留了把汽缸从水平中分面分开的双层缸结构。外缸提供了内缸以及用于后几级叶片的持环的支撑。大多数设计依赖于利用螺栓把每个汽缸的两半部分连接。在这点上唯一的例外是由ABB公司设计的汽缸,它再次采用了收缩环结构。

对于两次再热汽轮机中的高中压联合汽轮机,它的布置取决于制造商。仅仅有一些制造商发展了专门用于超临界参数的反向流汽轮机。对于高中压联合汽轮机别的设计,已由其他制造商用于亚临界参数的汽轮机中,并且有望引入到超临界参数汽轮机中。

用于超临界机组的中压汽轮机和高中压联合汽轮机,与现有的亚临界机组许多设计相同。除了材料上要求改善外,对于高于600oC的蒸汽温度的大幅提高,没有必要有更进一步的发展。

低压汽轮机

大多数低压汽轮机可用于高参数蒸汽的机组,而不需要采用专门用于高温的材料。然而,主蒸汽和再热蒸汽压力的提高,可能会提高低压汽轮机排汽的湿汽含量。这会加快末级叶片的腐蚀速度,对于叶片和其他易腐蚀部件有必要增加额外的保护。

在超临界汽轮机上,还有一个普遍的趋势,那就是提高末级叶片长度和增大排汽面积,由此减少低压汽轮机缸的个数,从而减少成本。通常这也会增加末级动叶片产生腐蚀故障的可能性。

从二十世纪八十年代早期以来,通过计算流体动力学(CFD)和三维通流计算方法的使用,叶片设计得到了巨大的发展并且使叶片效率得到大幅提高。不知道这种趋势会延续到什么程度。 3.6.2 汽轮机发展趋势

240bar/565oC/580oC的蒸汽参数被认为是先进电厂蒸汽参数的标准,随着设计和材料的进步,有更高效率目标的新电厂可达600oC。电厂发展的主要推动力是允许更高蒸汽参数的材料。没有这些新材料的使用,要想获得蒸汽参数更进一步的发展是极不可能的。

对于锻造的汽轮机转子和叶片以及铸造阀门和汽缸需要蠕变强度提高的铁素体钢。美国(如美国电力研究院,EPRI)、日本(EPDC)和欧洲(如欧盟科技联合体COST)都已开始着手研究适合于600oC或更高温度的蠕变强度大大改善的钢材。最近开始的EC-THERMIE项目资助的?700‘工程的目的是到2013年进行蒸汽参数达到700oC的运行,其中部分采用了基于镍的合金钢。

尽管高压汽缸保持了双层缸为主流的设计,但是三层或部分三层汽缸设计正在积极地考虑中,从而有助于汽缸承压和避免过度的壁厚。对于最热部分的隔热和冷却蒸汽的设计也在发展中。

给水加热循环的优化也得到了发展。采用更高给水温度的趋势导致了加热器个数的增加,以及从高压缸抽汽的可能性增加。由于传统的管板式加热器设计需要厚壁部件,并且在较高的温度和压力下易于产生裂纹,加热器还有转向采用联箱式高压加热器的趋势,

对于每个新建电厂,锅炉给水泵在给水加热管路中的位置需要优化,需要在驱动给水泵耗功和增加额外的高压给水加热器的成本间寻求平衡。

目前,基于经济性角度考虑难以证明采用两次再热是合理的,还没有确定采用两次再热的趋势。尽

26

管制造商能根据具体要求提供“预订”设计,但是一次再热设计有望保持为标准设计。

第4章 火力发电厂 4.1 简介

电站的生产过程利用的是一个封闭的蒸汽动力循环,在这个循环中伴随着水的各种热力过程。

有一半的循环包括锅炉(或热源)及其辅助设备;另一半的热力循环则包括汽轮机,发电机,凝汽器,给水泵及给水加热器。

在锅炉中给水被加热成干饱和蒸汽。干蒸汽进一步过热并进入汽轮机的高压缸。过热蒸汽在汽轮机中膨胀,很大比例的热能转化为带动汽轮机转子的动能。汽轮机转子带动发电机产生电能。做功后的蒸汽离开高压缸回到锅炉被再次加热。再热蒸汽进一步在汽轮机中压缸和低压缸中膨胀做功,然后进入凝汽器。 蒸汽在凝汽器这个大型表面式换热器中,通过释放汽化潜热给冷却水(CW)从而被冷凝。主蒸汽在凝汽器中被冷凝成很低压力下的接近饱和的水。凝结成的水从凝汽器排入热井。热井中的水被凝结水泵抽出,经过低压给水加热系统后进入锅炉给水泵。

在现代回热循环中,一部份蒸汽通过布置在汽轮机汽缸上的一系列位于选定的动叶级后的抽汽口进入到凝汽器和给水加热器中。这些蒸汽被用来加热低压加热器中的凝结水及高压加热器中的给水,这些加热器都属于表面式换热器。

给水经锅炉给水泵增压到高于汽包的压力,以足够克服给水经过锅炉汽水系统和高压给水加热系统的压力损失。至此整个循环就完成了。 4.1.1 应用过热的实际循环

朗肯循环向一个更实际的蒸汽循环的首次改进包括提高进入汽轮机蒸汽的温度和压力。

在过热蒸汽循环中,干饱和蒸汽离开锅炉汽包并进一步过热后才能进入汽轮机。由此,提高了循环的效率。这种过热循环选择与先前的朗肯循环具有相同的汽轮机排汽条件。然而,过热蒸汽的一个主要好处在于提高循环蒸汽的温度和压力,使得汽轮机的排汽湿度可以保持在所能承受的物理极限内。 4.1.2 再热循环

由于希望进一步增加循环的条件并由此提高循环效率,于是在汽轮机内的膨胀过程中增加蒸汽的再热循环。再热循环中,额定温度的蒸汽在汽轮机中部分地膨胀做功,然后回到锅炉,被再热到最初的额定温度左右。再热蒸汽进入汽轮机其余部分继续做功,之后进入凝汽器冷凝。

再热循环的引入相比过热循环提高了热效率。同时再热循环也降低了汽轮机排汽的湿度,但也由于增加再热系统进、出锅炉以及布置在炉内的管道带来了基建投资的增加。为了避免单缸情况下机组再热级之间的热梯度过大,汽轮机通常分为高压缸和低压缸。 4.1.3 回热加热系统 regenerative feedheating

要完成蒸汽循环的循环过程,必须对其包含的回热系统加以讨论。实际上,一定比例的蒸汽从汽轮机的不同部位被引出,用于加热给水,凝结后返回锅炉。凭借着抽汽释放所有的热量加热给水而很少或基本没有到凝汽器的热量损失,一个简单的朗肯循环能够提高其热效率,但同时由于抽汽没有在汽轮机中膨胀做功而产生一个较小的损失;然而,这项损失远小于循环效率提高所带来的好处。

安装的给水加热器的数量越多,热效率的提高也越多。 然而,随着给水加热器数量的增加,每台新增加

27

热器得到的收益却会减少。 4.1.4 超临界机组

一个有效增加热效率的方式是提高蒸汽压力。自然循环锅炉的压力极限在2608.2psi (18MPa)左右,虽然压力较高时可能会用到强制循环,但要想提高电站的整体效率,压力需要被提高到3477.6psi (24MPa)左右,即在水或蒸汽的临界压力之上(3205.2psi (22.12 MPa))。尽管使用超临界压力要求在锅炉设计上进行特殊考虑,但对于汽轮机来说则是压力越高越好。

热效率的进一步改善也许能够通过提高蒸汽温度来获得。尽管有些电站工作在1049℉(565℃),甚至一些早期投运电站的工作温度高达1166℉(630℃),但是,全世界运营的大多数超临界电站都工作在1000.4℉(538℃)。在更高的温度下,经常通过使用两次中间再热来进一步地增加热效率。提高蒸汽温度除了带来增加效率的好处之外,还能够减少汽轮机排汽的湿度从这样先进的最初的情况将否则需要的高级的涡轮尾气水湿。

350-1000兆瓦中所谓的‘超超临界’电站的蒸汽参数为4491.9psi (31MPa)、1094℉(590℃),并且有些被提高到5071.5psi (35MPa) 、1166℉ (630℃),这些电站都具有两次中间再热循环,已经或即将投入运行。 两次中间再热循环的使用增加了系统的复杂程度。首先,必须增加额外的锅炉蒸汽温度控制系统,另外汽轮机必须有一个额外的汽缸,或者必须将联合汽缸用于前两次蒸汽膨胀做功。额外汽缸增加了设备的尺寸和费用,而联合的汽缸有可能带来两次膨胀做功之间密封的问题,或冷、热段再热温度过于接近的问题。

只要有足够的时间和资源,这些发展都不存在技术问题。 它们的实际应用依赖于潜在的客户,要让客户满意于效率提高的潜在回报,同时不伴随机组寿命、操作灵活性或可用性方面的额外风险。发展方案以及第一个实际大小的原型机组将为此提供必要的保证,方案包含全方位的研究、设计、装配测试,以及原型组件测试。

然而,引进这些电厂的速度尚不确定,这取决于电力需求、燃料成本、经济环境、可替代能源的范围,以及为延长现有电站寿命进行的改造等诸多因素。 4.2 现代蒸汽电厂

锅炉大多应用在电力生产或蒸汽供应这两方面。而某些情况下的应用,则是在发电的同时进行蒸汽供应,我们称之为热电联产。无论哪种应用,锅炉都是一个大系统中的重要组成部分之一。这个大系统的关键子系统包括燃料获取和制备、锅炉和燃烧、环境保护、汽轮发电机组和带有冷却塔的热量排放。 图4-1显示了能够满足当前低污染排放要求的先进的燃煤机组。燃煤机组中最主要的三大部分分别为:(1)锅炉部分,在这部分煤粉燃烧以在炉管中产生蒸汽;(2) 发电机部分,包括汽轮发电机组装置,控制蒸汽、凝汽器和冷却水系统。(3)烟气净化处理部分,除掉烟气中的颗粒物和标准规定的污染物。烟气净化处理部分包括选择性催化还原法脱硝装置,接着是去除颗粒物的电除尘器和湿法烟气脱硫装置。煤的选择、烟气系统的设计和运行都要保证污染物排放低于允许的水平。

燃料处理系统存放着燃料供应(在本例中的煤炭),为燃烧准备燃料并且输入锅炉。辅助风系统通过送风机为燃烧器提供空气。锅炉子系统包含有空预器,涉及风煤混合物的燃烧和余热回收,并产生可控的高温、高压蒸汽。 经过空预器后的烟气进入除尘器和脱硫(SO2)系统,在这里污染物被收集起来并且飞灰和脱除装置的固体残留物被清除。净化后的烟气通过引风机排入烟囱。

28

锅炉蒸发水并且在精确的控制条件下供应高温、高压蒸汽。蒸汽进入汽轮发电机组生产电能。在通过多级汽轮机系统的一部分级以后,蒸汽可能会被送回到对流受热面(未显示的再热器),从而在锅炉中接受再热。最终,蒸汽流经汽轮机排入凝汽器,释放残留的热量。水从凝汽器返回到锅炉之前,经过一些水泵和换热器(给水加热器)以提高压力和温度。凝汽器吸收的热量最终通过一个或更多的冷却塔被排入大气。冷却塔或许是电力系统中最显眼的部分。图示的自然通风冷却塔基本上是一个空心圆柱结构,通过空气和水蒸气的流通来吸收凝汽器排放的热量。多数现代电厂都建有这样的冷却塔。 4.3 主要系统和部件 4.3.1 锅炉和主蒸汽系统

锅炉中的水被加热沸腾,转化为干饱和蒸气,然后进入过热器过热。出来的过热蒸汽进入汽轮机。经过汽轮机的蒸汽推动汽轮机转子产生机械能,汽轮机转子带动交流发电机,从而生产出可供分配的电能。通过新式的具有回热循环的汽轮机后,部分蒸汽从汽轮机汽缸上一系列的七个或八个(或多或少)抽汽口引出,进入给水加热器加热给水。通过调节阀进入汽轮机的蒸汽大约有70~75%在汽轮机中完全膨胀做功,通过排汽缸进入凝汽器。 4.3.2 凝结水系统

凝汽器是一个大型表面式换热器,进入凝汽器的蒸汽被凝结,从附近的河或湖中抽取的循环水将所产生的潜热带走。循环水由电动或汽动循环水泵泵入凝汽器。因为进入凝汽器蒸汽的流量极大,不可避免的会有一定比例的气体不发生凝结。为了在凝汽器中建立并保持一个非常接近真空状态的负压,必须从凝汽器壳体中去除这些“不凝结气体”。通常通过射汽抽气器去除这些气体,它的主要组成是一个喷嘴,蒸汽通过喷嘴获得很高的流速,从而带走那些不凝结的的气体。然后流经喷嘴的蒸汽 (作为原动力的蒸汽)和被其机械携带的不凝结气体进入通常被称作二次凝汽器的换热装置,蒸汽在环境压力下凝结,不凝结气体被排入大气。射汽抽气器置于一个或两个级内,本质上是一台压缩机,它将不凝结蒸气的压力从几乎完全真空提高到大气压来清除掉。

流经汽轮机的主蒸汽,在凝汽器中被凝结成接近真空压力下的近似饱和的水。这些凝结水在重力的作用下流向凝汽器底部,然后进入热井。通常热井水位通过控制热井水泵来维持。热井水泵将热井中的水泵出,经给水加热系统的低压部分后,到达锅炉给水泵。凝结水经热井水泵升压后首先进入低压加热器,被压力最低的抽气加热。如图所示该低压加热器配有一台疏水泵,疏水泵的作用是将加热器疏水(水蒸气凝结而成)泵入位于其后的凝结水主管道。这种型式的加热器也被称作强制疏水加热器。 4.3.3 除氧和给水系统

凝结水流经低压加热器后进入除氧加热器。除氧加热器是混合式加热器,通过加热凝结水使其沸腾的方法除去所有携带的氧气。除氧加热器除去氧气的依据是,当水的温度接近沸点时能极大地降低不凝结气体在水中的溶解度。加热进入除氧器凝结水至沸点的热量由汽轮机的抽汽提供。从被加热凝结水表面释放出的不凝结气体必须被去除。正常情况下除氧器的工作压力高于环境压力,因此这些气体能通过排气冷却器被排放掉。通常是引入凝结水来冷却排气冷却器,在冷却不凝结气体的同时冷却水蒸气,但有一部分水蒸气不可避免地随着气体从除氧器逸出。通过对排气冷却器适当的设计,蒸汽凝结后可能以疏水形式回到除氧器,而不凝结气体则通过节流孔排入大气。

在原始的设计中有时也许有除氧器的工作压力低于环境压力的考虑。即使当额定负荷的设计压力比环境

29

压力高得多,也会遇到较低负荷时变成负压的情况。于是有必要将不凝结气体继续从除氧器中去除,为达到这个目的就需要射汽抽气器。但是该设施产生的费用和复杂化使它的安装并不普遍。为此普遍的做法是在低负荷时切换抽汽段,以便除氧器的蒸汽供应由下一个更高的抽汽点提供。一个简单的布置是安装一个带有控制阀的连通管,并在连接到连通管的低压抽汽管道上安装逆止阀。在这种布置中,打开连通管上的控制阀会自动提供较高压力的蒸汽至除氧器,并且逆止阀关闭,用来防止蒸汽回流到较低压力的抽汽段。

在许多电站中设有与除氧器并联的缓冲水箱来储存水。缓冲水箱的作用是在事故时,如其它水源中断的情况下提供蒸馏水,或者作为负荷变动时存储过剩水量的水箱等。正常情况下除氧器的存储容量足以维持电站运行几分钟,但是多数设计师认为用一个更大的缓冲水箱来增加存储容量是明智的。

在相当多的大型电站,锅炉给水泵与除氧器疏水出口相连。由于除氧器内的水达到了沸点,所以布置在除氧器下方的锅炉给水泵要有一个必需的汽蚀余量(通常至少20 英尺 (6米)),以避免锅炉给水泵出现汽蚀。

4.3.4 加热器和给水加热系统

离开除氧器的水经锅炉给水泵泵入下一级加热器。这台加热器是疏水加热器,即,疏水通过换热器(疏水冷却器),释放热量加热进入的凝结水。离开这台加热器以后,凝结水进入高压加热器被加热到最终给水的温度。最后一级加热器是一台闪蒸加热器,使用这种叫法是因为它允许疏水通过一个控制节流口或调节阀,到达相邻的较低压力的加热器,其中一部分饱和水闪蒸为蒸汽。这种布置取消了疏水泵和疏水冷却器,但是会导致较大的热损失。

图4-2示意了四种不同类型的加热器,即闪蒸加热器、疏水冷却加热器、除氧或混合式加热器,以及配有疏水泵的加热器。

现代蒸汽动力电站的加热器布置方式没有确立很好的标准。粗略的分类,所有加热器可分为表面式或混合式。对于表面式加热器,这样叫是应为它使用间接的加热表面,凝结水在管内流动,而抽汽则进入加热器的壳侧。翅片管或光滑管都有应用,但显然光滑管的应用更普遍。当抽汽进行加热时,表面式加热器的换热面布置必须能够承受管束的自由热膨胀。出于膨胀的考虑,可以通过具有一定自由度的设计或安装发卡弯类型的管束来解决。表面式换热器通常会用在给水加热循环中压力较高的场合,因为在该循环的出口凝结水压力接近或高于锅炉压力,且与混合式加热器相比,在管内输水更加容易。

混合式加热器通常被用作除氧器。它有能储存大量凝结水的钢制外壳,使蒸汽和凝结水充分地混合。凝结水通过排气凝汽器进入混合式加热器,再通过一系列淋水盘流至加热器底部。蒸汽穿过淋水盘侧边流下的凝结水,保证了蒸汽和水充分地混合,并将凝结水加热至加热器压力下对应的饱和温度。众所周知,当水被加热至沸点时,水中包含的所有永久气体的可溶性会大大减小,从而使这些气体从水中逸出。在电站循环中的除氧器具有双重功能:一方面加热水使其有一个显著的温升,大约60或70℉ (15.6或21.1℃),另一方面能够使其达到饱和温度。这就使得不凝结气体从水中逸出。然后这些不凝结气体通过排气凝汽器,其中水蒸气被凝结,气体则被排放到大气。

有时混合式加热器也用于给水加热系统的低压部分,但这是特例而不是一般的规则。虽然如此,至少有一个大型汽轮机装置,对所有的抽汽采用混合式加热器。这种布置的可用性(纯粹从热量的角度)是不容置疑的,但是它的热力学收益必须和每台混合式加热器必需配备分离水泵的支出相平衡。事实上每个分离

30


热能与动力工程专业英语第1,2,3,4,7,8,9章译文(6).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:安徽科技学院SYB创业计划书范文

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: