数字图像中边缘检测算法综合研究(3)

2012-08-21 19:44

    (1)平滑滤波的迭代运算使信号的边缘得到锐化,此时再进行边缘检测,可以得到很高的边缘定位精度;     (2)通过自适应迭代平滑,实现了将高斯平滑之后的阶跃边缘、屋顶状边缘和斜坡边缘都转化为理想的阶跃边缘,提高了图像的信噪比;     (3)经过多次迭代运算,图像按边缘分块实现自适应平滑,但不会使边缘模糊;     (4)应用自适应平滑滤波得到一种新的图像尺度空间描述。

2.5  其他方法

    近年来随着模糊数学、神经网络的发展,人们不断探索将其应用于图像的边缘检测中。文献[11]和[12]依据模糊理论讨论了边缘检测算法的抗噪性和检测速度问题,并证明了模糊集合理论能较好地描述人类视觉中的模糊性和随机性;应用人工神经网络提取图像边缘成为新的研究分支,目前已提出了很多算法,具有计算简单功能强的特点,但是速度慢,稳定性差。但是神经网络边缘检测可以避免自适应确定阈值的问题,具有较好的容错性和联想功能。

2.6  边缘检测的步骤

    边缘检测分为彩色图像边缘检测和灰度图像边缘检测两种,由于彩色图像有八种彩色基,在边缘检测时选用不同的彩色基将直接影响实时性、兼容性和检测效果,因此本文只限于灰度图像的边缘检测研究,其步骤如图2.1所示。

    其中边缘定位是对边缘图像进行处理,以得到单像素宽的二值边缘图像,通常使用的技术是阈值法和零交叉法。边缘定位后往往存在一些小的边缘片断,通常是由于噪声等因素引起的,为了形成有意义的边缘需要对定位后的边缘进行链接。通常有两种算法:局部边缘链接和全局边缘链接。

3  边缘模型的分类及性能分析

    本小节从边缘检测“两难”问题出发,总结了实际图像中可能出现的七种边缘类型,并分别给出了数学模型描述,最后分析比较了不同边缘类型表现出的特性及不同类型的边缘定位与平滑尺度的关系。

3.1  边缘检测的“两难”问题

    首先来了解一下边缘检测的常用定义[13]:边缘检测是根据引起图像灰度变化的物理过程来描述图像中灰度变化的过程。引起图像灰度不连续性的物理过程可能是几何方面的(深度的不连续性、表面取向、颜色和纹理的不同),也可能是光学方面的(表面反射、非目标物体产生的阴影及内部倒影等)。这些景物特征混在一起会使随后的解释变得非常困难,且实际场合中图像数据往往被噪声污染。信号的数值微分的病态问题:输入信号的一个很小的变化就会引起输出信号大的变化。令 f(x)为输入信号,假设由于噪声的影响,使 f(x)发生了一个很小的变动:               式(3.1)     其中 ε<<1。对式(3.1)两边求导数则:          式(3.2)     由式(3.2)可以看到,若w足够大,即噪声为高频噪声时,会严重影响信号  f(x)的微分输出,进而影响边缘检测的结果。为了使微分正则化,则需要先对图像进行平滑。然而图像平滑会引起信息丢失,并且会使图像平面的主要结构发生移位。另外若使用的微分算子不同,则同一幅图像会产生不同的边缘,因此噪声消除与边缘定位是两个相互矛盾的部分,这就是边缘检测中的“两难”[14,15]

数字图像中边缘检测算法综合研究(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:解决企业局域网IP地址冲突被盗用的几种策略方法

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: