SHAPE \* MERGEFORMAT
图(3.2.1)
其中 ,权的迭代用LMS算法,如下式所示,权的修正过程如下:
式(3.2.1.3)
3.2.2 自适应陷波滤波器Matlab仿真分析
图6.3.2
上图可以看出经过正弦信号干扰的原始信号,在通过自适应陷波滤波器后,基本达到噪声消除的效果。上图中第一个图为原始信号,第二个为经过正弦信号干扰后的信号,第三个为消噪后的信号,第四个为误差信号曲线。
3.3 自适应预测
3.3.1 自适应预测的基本思想
要得到预测系数,必须获得输入信号采样值的相关函数矩阵,而实际上它不是一个定值,是时变的,所以就要求必须自适应调整预测系数,以保持最佳的预测增益。求相关函数的简单方法是,先采样并存储一个定长时间间隔的信号值,计算这些采样值的自相关函数,然后确定最佳的预测系数。预测器每隔规定的时间间隔更新依次存储的采样数据,并且每次将计算的预测参数发送到接收端。通过上述方法动态调整预测参数,在存储采样值时间间隔较长或每次存贮采样值个数较大的情况下,可以获得很大的预测增益。这就是自适应预测器的基本思想。
忽略量化噪声的影响,预测误差函数
式(3.3.1.1)
需要说明,考虑到实际系统的可实现性,可以用误差函数的量化值 。调整预测系数使误差函数向负梯度的方向变化,即
式(3.3.1.2)
式中,sgn[]是符号函数, 是预测系数自适应速率,需要根据实验确定其最佳值。也可以考虑用平方差值函数确定预测系数,即
式(3.3.1.3)
自适应预测器的实现比较复杂,但是,当信号采样值相关距离大或信号统计特性的平稳性不佳,无法获得确切和恒定的相关系数的情况下,自适应预测是较理想的预测方法。
在许多情况下,一个宽带信号既受到周期性干扰的污染,又没有无信号的外部参考输入可以利用。此时,可以直接从原始输入引出,接入一具有固定延迟的延迟线,则可得到类似的参考输入支路。这种结构实际上是一个自适应预测器。
下图仿真采用的是线性预测滤波方法抑制窄带干扰的算法。
3.3.2 自适应预测的Matlab仿真
图3.3.2
由上图可以看出预测信号在经过一段自适应过程后能够很好的跟踪接收信号,达到预测效果。
3.4 自适应均衡
3.4.1 自适应均衡的基本原理
自适应均衡器的工作过程包含两个阶段,一是训练过程,二是跟踪过程。在训练过程中,发送端向接收机发射一组已知的固定长度训练序列,接收机根据训练序列设定滤波器参数,使检测误码率最小。典型的训练序列是伪随机二进制信号或一个固定的波形信号序列,紧跟在训练序列后面的是用户消息码元序列。接收机的自适应均衡器采用递归算法估计信道特性,调整滤波器参数,补偿信道特性失真,训练序列的选择应满足接收机均衡器在最恶劣的信道条件下也能实现滤波器参数调整,所以,训练序列结束后,均衡器参数基本接近最佳值,以保证用户数据的接收,均衡器的训练过程成功了,称为均衡器的收敛。在接收用户消息数据时,均衡器还需要不断跟踪信道特性的变化并随信道特性的变化连续地改变均衡器参数。