3?氨基丙基三乙氧基硅烷(APS,98%, Alfa Aesar公司);葡萄糖氧化酶(GOD,120 U/mg,Sigma公司);标准葡萄糖储备液,放置过夜后使用,保存于4 ℃冰箱中。鲁米诺(>98%,Fluka公司); 戊二醛(25%,上海化学试剂厂);其它试剂均为分析纯。实验用水为二次蒸馏水(18.2 MΩ·cm)。
2.2 酶传感器的制作
2.2.1 固体石蜡碳糊电极的制作
参考文献[13],取3 cm长的铁棒(外径 2.55 mm)和2 cm长的玻璃管(3.0 mm i.d),磨平铁棒和玻璃管的两端,用水洗净。按一定比例混合固体石蜡和碳粉,加热熔化石蜡,均匀搅拌,制得石蜡碳糊。把铁棒插入玻璃管中距底部约0.5 mm,形成一个凹坑,趁热将石蜡碳糊封装进此凹坑,填平,冷却,除去玻璃壁外的沾粘的碳糊,并在光滑打印纸抛光电极表面。然后分别用HNO3(1∶1, V/V)、无水乙醇和二次蒸馏水清洗电极。在1.0 mol/L H2SO4溶液中采用循环伏安(CV)法活化作为工作电极的SPCE,扫描范围1.2~-1.2 V。再于5 mmol/L K3Fe(CN)6溶液中循环扫描,扫描范围改为0.5~-0.2 V。重复上述步骤直至得到峰形良好的一对可逆氧化还原峰。
2.2.2 磁性纳米粒子的制备、氨基化和葡萄糖氧化酶修饰
按照n(Fe2+)∶n(Fe3+) = 1∶1.75称取适量FeCl3·6H2O和FeSO4·7H2O,溶于水中。搅拌下快速加入适量 2.0 mol/L NaOH溶液,调pH值至11.0,室温下搅拌0.5 h,迅速升温到75 ℃,熟化0.5 h,整个过程都在氮气的保护下进行,得黑色悬浮液。超声15 min,磁铁分离不溶物,用水洗涤至溶液呈中性。在75 ℃下真空干燥,得粉末,4 ℃下密闭保存在。
取20 mL乙醇,加入50 mg Fe3O4纳米粒子粉末,超声分散,之后加入0.2 mL 3?氨基丙基三乙氧基硅烷(98%),在氮气的保护下,25 ℃搅拌12 h制得氨基化的磁性纳米粒子,用无水乙醇、水超声清洗后定容至20 mL备用。
取2.0 mL上述溶液于5 mL试管中,晾干,再于试管中加入2.0 mL 0.25%戊二醛,混旋30 s后,放入4 ℃冰箱冷藏1 h,之后水洗并晾干,再加20 g/L GOD溶液2.0 mL,于4 ℃冰箱中保存12 h,制得GOD修饰的磁性粒子溶液(GOD/ Fe3O4)。图1为磁性纳米粒子固定葡萄糖氧化酶的示意图。
2.2.3 自组装磁性纳米复合粒子修饰电极
SPCE电极面朝上,用磁铁吸住电极上端铁芯,滴加15 μL GOD/Fe3O4粒子在电极表面,制得酶修饰电极(GOD/Fe3O4/SPCE/CME)。测定时将电极面对准光电倍增管检测方向。每次更新电极时,移去磁铁,水洗去磁性复合粒子,之后重复上述过程以更新电极。
2.3 ECL传感器原理和实验方法
ECL传感器的原理如图2。GOD/Fe3O4复合磁性纳米粒子通过外加磁场而修饰在SPCE电极表面。此时,溶液中的葡萄糖与溶解氧发生GOD酶促反应,生成H2O2。同时,溶液中的鲁米诺在修饰电极表面发生氧化,鲁米诺氧化物与H2O2发生ECL反应。GOD/Fe3O4复合磁性纳米粒子的存在促进了鲁米诺的氧化和H2O2生成。在本实验中,室温下,将10 mL含一定浓度的葡萄糖的0.5 mmol/L鲁米诺? 0.1 mol/L硼酸钠缓冲溶液(pH=8.0)转至石英烧杯中,然后采用三电极系统进行测试,并测定ECL的强度。扫描范围为0.2~1.4 V(vs. SCE),扫速为50 mV/s。光电倍增管高压600 V,采样速率10 T/S,放大倍数3,测量时间60 s。SPCE不用时置于冰箱中4 ℃下保存。
3 结果与讨论
3.1 Fe3O4纳米粒子的表征
3.1.1 Fe3O4纳米粒子粒度分析
用激光散射仪(英国Malvern公司)测定Fe3O4纳米粒子粒径。从图3可见,本实验所制备的Fe3O4磁性粒子粒径主要分布在12~22 nm之间。说明磁性纳米粒子已经达到纳米级,且粒径分布较为集中,因此,可用于后续实验。