农药混剂联合毒性评价(2)
2012-08-26 23:14
从各混剂实测毒性与按Harris法计算的预期毒性相比较,观察到混配后的毒性发生一些改变。本研究所用的3类农药按化学结构均属酯类。这些农药进入机体后即可抑制体内的酯酶系统,如乙酰胆碱酯酶(AchE),也可与酶结合(B-酯酶等)或被水解(如A-酯酶)[3]。当2种农药同时进入机体后,酯酶体系负荷、应激能力与给予单剂时不同,因此即使按等毒剂量混配后给动物染毒也会引起代谢途径和速率的变化,致使总体毒性发生改变。如Jokanovic等证实,B-酯酶通过水解酯键或通过其活性部位与有机磷酸酯结合的2种机制,在有机磷酸酯解毒过程中起着重要作用[4]。由于各种有机磷酸酯对B-酯酶的亲和力不同,因此在与其他农药混配时就有可能使毒性发生变化。
3.1 有机磷与有机磷混配的联合作用
有机磷与有机磷混配因作用靶位点相同,理应呈相加作用。Keplinger等对101对有机磷与有机磷、有机磷与有机氯进行了联合作用评价,结果为80对有相加作用、9对大于相加作用、12对小于相加作用[5]。曾有人对甲基对硫磷与多种有机磷(蝇毒磷、育畜磷、乐果、敌恶磷、乙拌磷、丰索磷、乙基对硫磷、磷胺、敌百虫)混配毒性进行了研究,也主要呈亚相加作用或是相加作用[6]。敌敌畏与其他22种有机磷杀虫剂混配未呈协同作用,而与马拉硫磷混配呈现明显的增毒作用[7]。这些报告表明有机磷与有机磷混配多为相加作用。本研究结果与上述报告基本一致,我们研究的3对混配中2对为相加作用,仅甲基对硫磷+辛硫磷混配的毒性比为0.61,属拮抗作用。众所周知,单剂有机磷农药主要代谢途径为氧化、水解、谷胱甘肽转移以及代谢产物的结合反应等,各途径处在动态平衡中。就水解作用而言,很多抗胆碱酯酶的有机磷酸酯是由一组被称为A-酯酶或对氧磷酶水解的。该酶存在于血浆和肝内质网中,可通过裂解酸酐键、P-F、P-CN或酯键水解许多有机磷[8]。Sultatos曾证实对硫磷与毒死蜱混合,动物体内产生的对氧磷与对硝基酚减少,表明对硫磷的氧化作用减少;而水解作用、谷胱甘肽转移酶增强,致使脱甲基和脱芳基产物增多,毒性降低,认为可能是毒死蜱抑制了对硫磷的氧化作用[9]。辛硫磷+甲基对硫磷发生拮抗作用的机制,可以从单剂和混剂的对数剂量-效应曲线的斜率改变看出,毒物在达到相同效应时剂量发生了改变。2药单剂的斜率分别为3.77和5.36,等毒混配后的斜率为10.19,这除了生物变异因素以外,提示可能有毒代动力学的变化,即表明毒物在体内的吸收速率和代谢过程发生了变化。根据Sultatos的实验结果,可能除了辛硫磷抑制甲基对硫磷的氧化作用外,还可能与甲基对硫磷竞争肝微粒体氧化酶,致使生成甲基对氧磷减少而转向脱芳基解毒途径。另外,从等价毒性可知,该甲基对硫磷毒性较辛硫磷大83倍,辛硫磷要达到抑制AchE的阈浓度就必需占有较多的活性位点,因此会与甲基对硫磷竞争活性位点,使生成的甲基对氧磷也不能磷酰化AchE,而有机会被A-酯酶水解使总体毒性降低。 3.2 有机磷与拟除虫菊酯混配的联合作用
本研究涉及的6对有机磷和拟除虫菊酯的混剂中有4对为协同作用:辛硫磷+溴氰菊酯、辛硫磷+高效氯氰菊酯、水胺硫磷+甲氰菊酯、甲基对硫磷+高效氯氰菊酯;辛硫磷+氰戊菊酯混配属相加作用,但毒性是预期毒性的1.5倍;敌敌畏+溴氰菊酯混配也为相加作用,毒性有一定的降低,即所谓亚相加作用(毒性比为0.76)。拟除虫菊酯类在哺乳动物体内主要代谢途径是酯键的水解,其中B-酯酶起着重要的作用,尤其是在经口染毒时可迅速被水解而解毒。此外,Gauhan等也证实哺乳动物的酯酶对有机磷抑制作用十分敏感,酯酶抑制后可使氰戊菊酯毒性增加25倍[10]。也有报道认为,在拟除虫菊酯代谢过程中除了酯酶水解作用外,肝微粒体氧化酶体系的氧化也起到一定的作用。当有机磷与拟除虫菊酯类混配时,有机磷可抑制肝微粒体酶,或与拟除虫菊酯类竞争B-酯酶,或竞争微粒体氧化酶而使拟除虫菊酯类代谢延缓,使拟除虫菊酯毒性增加[11]。这与酯酶受抑制后,拟除虫菊酯的水解减少有关[12]。有人研究了溴氰菊酯与多种有机磷的联合作用性质,其中与氧乐果、敌敌畏、益棉磷混配时毒性增加,而与乙酰甲胺磷、久效磷、磷胺、甲基对硫磷混配时毒性未增加[13]。我们的实验结果也是多呈协同作用,与以往的报道基本一致。但我们研究中,未见敌敌畏与溴氰菊酯混配时毒性增强,与上述报道不一致,分析原因可能与所用药品品级和染毒方式不同有关。我们的药剂为原药并同时给药,文献中用的是乳油,先给敌敌畏,间隔一段时间再给溴氰菊酯。
农药混剂联合毒性评价(2).doc
将本文的Word文档下载到电脑
下载失败或者文档不完整,请联系客服人员解决!