学习本单元的内容时,图形的运动就是最后被架构成的模块,平移、旋转和轴对称就是其下被类合成的类目,那么这些类目是怎么构成的呢?学生需要基于经验去思考:以哪些要素、哪些内容去把各种运动区分开来,使它们成为一个个独立的类目?大致的学习过程如图4所示。从图中可以看出,学生通过各种方式接触大量关于运动的感知材料,在赋予意义后,通过对知识因子的性质或特点的审视,即考察运动的结果、过程、前后变化等,就会在大量的经验中总结出“像这样的运动过程就是平移”“像这样的运动结果就是旋转”等等,从而形成三种类目(这是类合的过程)。此时的类目是通过系统的活动从直观感受中获得的,可以使原本模糊的认识逐渐清晰。从图中还可以看出,学生基于三种运动的联系与区别,去思考如何将它们统一起来,即通过对各个运动的性质或特点的再审视,可以架构出“图形的运动”这一模块。此时的模块不再是偏向于各个独立的类目的,可以使原本肤浅的认识逐渐深刻综合来看,类合过程更多针对单个类目思考其不同点,如平移有什么特征,与旋转有什么不同点;而架构过程更多针对各个类目思考其共同点,如平移、旋转和轴对称有什么共同点,是否可以进一步概括。通过这些问题的探究与解决,“图形的运动”模块能够自然地形成。
在这一过程中,需要注意两方面:(1)要利用“类”的思维找到所形成类目时可供探究的内在因素,即具体材料的性质或特点。如果没有对这些因素的探究,可能就不能显现出同类之间的联系,从而难以很好地类合成类目,也不能深入地架构出模块。例如,知道了平移的结果,但是同时在想的是旋转的过程,可能就不能很好地把这两者结合起来思考,因为它们并不是同一因素下的内容。(2)要注意不同的因素不一定是同一层次的并列,也可能是不同层次的深入。例如,从静态的运动结果,想象动态的运动过程,再联系起来考虑运动的前后变化,综合这些方面的因素,可以总结归纳出运动的关键点。上述的因素排列就是一直不断深化的过程——得到了各个运动的关键点,也就得到了形成类目的核心。
四、从“范例”到“运用”再到“综合”
数学学习不能单纯地基于抽象的概念进行操作,还要基于具体的现实、基于特殊的事例进行分析。这是数学本质的体现:数学作为一门学科,既有抽象性,也有现实性;既有理论性,也有实践性。正如史宁中教授所说:数学虽然是抽象的、可以超越现实的,但是对于它的研究却必须借助于现实、借助于事例,这是数学的一个特点。因此,数学学习往往需要从“范例”开始。这里的“范例”就是指现实、具体且与抽象对象有足够联系的一种情境。作为教学的情境,它应该具有典型性与深刻性,能够触及学生的生活经验,使得知识更有效地呈现在学生面前。
学习本单元的内容时,可以设计学生熟悉和喜爱的摩天轮情境,引导学生从数学的角度讨论摩天轮座舱的运动是平移还是旋转,从而发现:如果仅就现实中的情况来看,座舱的运动只能算是平移,因为运动中任意两个位置之间对应点的距离都相等(如图5所示);如果把座舱看成一个点,那么它的运动就可以看作旋转,相当于一个点在圆周上运动(如图6所示)。这个“范例”中,摩天轮是学生十分熟悉和喜欢的娱乐项目,可以让学生轻易地“走进”其中。同时,其中涉及的问题又具有挑战性,且触及运动的本质,能够激发学生的认知冲突,使得学生认识到运动的本质。
“范例”不能作为学习的终结,虽然它接近了知识的本质,但是真正地掌握知识是从运用开始的。实际上,运用是“范例”的延伸,而不是自立门户的探究过程。如果说“范例”打开了认识知识本质的“大门”,那么运用就是一个接着“爬楼梯”的过程。
学习本单元的内容时,可以设置一个“俄罗斯方块”游戏,包含用运动探究游戏过程(俄罗斯方块是怎样的运动),用运动探究游戏规则(各种俄罗斯方块与所学的运动知识有什么联系),用运动去玩游戏(基于所学的运动知识解决俄罗斯方块问题)几个部分。了解与玩的过程也是内在的运动知识沉淀激荡、不断打磨的过程,是一种“用”与“悟”的循环。这正像一个上楼梯的过程:踏出每一步后,又是一个更高层次的开始。
最后,一个数学知识模块是整个数学知识系统的一部分,学生需要打破原来的知识场域,打通与其接触的“四面八方”,才能形成更深层次的理解。这就是一个综合的过程。