2 安全等级特征量
系统安全评价可分为对系统未来状况和对系统现状的安全评价。对于系统未来状况的安全评价可以称作预评价,它分现实系统的预评价和待建系统的预评价。本文讨论前一种情况。对于现实系统未来的安全性,由于无法控制条件,一些偶然因素使系统运行的结果不可能准确地预先掌握,故具有随机性。安全本身就是一个模糊概念。所以,对系统未来的安全评价可以运用模糊随机变量理论。模糊随机变量的概念于1978年由H.Kwakernaak首次提出的,随后,国内外不少学者对模糊随机变量进行了研究[4~6]。由于系统的现状是已经发生的事件,所以具有确定性。但由于人们所掌握的信息是模糊的,且安全本身具有模糊性,所以,对系统现状的评价要使用模糊集理论。
2.1 安全等级模糊随机特征量与安全等级模糊特征量
系统安全等级或安全状态不宜分得过少,但也不宜过多。不失一般性,将系统安全等级分成c级,则其论域为U,并定义ui,i=1,2,…,c,随着i的增大,系统安全性增加,危险性降低。令ωi<ωi+1,则此时相当于ωi越大,系统越安全。与论域U相对应的取值论域为
对于Ω,也可以定义相反的情况。
对系统进行模糊综合评价后,所得出的对各安全等级的隶属度向量为
并且,
是(Ω,A,P)上的模糊随机变量。对于i=1,2,…,c,可得[4~6]
随机区间为
针对Ω及模糊集理论,构造如下的对称三角闭模糊数,即
除对称的三角模糊数外,也可用三角函数型模糊数。三角函数型模糊数为
选用对称的三角模糊数比较符合人们的习惯,且计算方便,所以应用较多。
由式(4)可得随机区间,即
用于确定安全等级的Ω上的集合称为安全等级特征量。根据模糊随机变量理论,考虑现实系统未来状况的安全等级变量的模糊随机性时,可得如下的安全等级模糊随机特征量,即
其α水平集为
当α=0时,H0FR为安全等级模糊随机特征量的支集。其特征量的中值为:
如果安全等级模糊随机变量的方差存在,对α∈(0,1],则有[6]
式中,
对系统的现状进行安全评价时,通常是根据隶属度向量计算特征量的加权平均值[1] ,即
式中,X(ω