Measurement of Lagrangian velocity in fully developed turbul(2)

2021-09-24 14:32

issmaller,sothatwedonotexpecttoresolvethedis-sipativeregion.Thestatisticalquantitiesarecalculatedfrom3×106velocitydatapoints,takenatasamplingfrequencyequalto6500Hz.Theacousticmeasurementzoneisincentralregionofthe ow,10cmthickintheaxialdirectionandalmostspanningthecylindercross-section.Inthisregionthe owisagoodapproximationtoisotropicandhomogeneousconditions:atallpoints,themeanvelocityisnonzero,butequaltoaboutonetenthofitsrmsvalue.

We rstconsidertheLagrangianvelocityauto-correlationfunction:

RL(τ)=

v(t)v(t+τ) t

2

1+(T(2)

Lω)2

.WeobserveaclearrangeofpowerlawscalingEL(ω)∝ω 2.ThisisinagreementwithaKolmogorovK41pic-tureinwhichthespectraldensityatafrequencyωisadimensionalfunctionofωand :EL(ω)∝ ω 2.Toourknowledge,thisisthe rsttimethatitisdirectlyob-servedathighReynoldsnumberandinalaboratoryex-

periment,althoughithasbeenreportedinoceanicstud-ies[5]andinlowerReynoldsnumberdirectnumericalsimulations[6].DeparturefromtheKolmogorovbehav-iorisobservedatlowfrequenciesinagreementwiththeexponentialdecayoftheauto-correlation.Athighfre-quencies,thespectrumdeviatesfromtheLorentzianformduetotheparticleresponse.NoteinFig.1bthatthemeasurementismadeoveradynamicalrangeofabout60dB.

Wenowconsiderthesecondorderstructurefunction

We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynold

ofthevelocityincrement

DL2(τ)= (v(t+τ) v(t))2 t= ( τv)2 .

(3)

Weemphasizethatthesearetimeincrements,andnot

spaceincrementsasintheEulerianstudies.Thepro leDLauto-correlation2(τ)isshownintheinsetofFig.2.byDtimesoneobservesthe2(τ)=2u2trivialscalingrms Itislinked1 RL

(τ) totheL:atsmall

DL

(τ)∝τ2andatlargetimesDL

2

2(τ)saturatesat2u2rms(asv(t)andv(t+τ)areuncorrelated).

)ετ(/L2

D10

10

t/τ10

η

FIG.2:SecondorderstructureDLfunction.Inset:pro le2(τ)asafunctionoftime,non-dimensionalizedTL.Inthemain gurethesecondorderstructurefunctionisnon-dimensionalizedbytheKolmogorovscaling τ.

Inbetweenthesetwolimits,oneexpectsaninertialrangeofscaleswithaKolmogorov-likescaling

DL2(τ)=C0 τ,

(4)

whereC0isa‘universal’constant.Suchabehavioriscon-sistentwithdimensionalanalysisandwithanω 2scal-ingrangeinthevelocitypowerspectrum.Fig.2shows

DL2(τ)/ τ;aplateauwithaconstantC0isnotobserved.NotethatthisalsothecaseinEulerianmeasurementswhenthethird

orderstructurefunctionisrepresentedinlinearcoordinates[13].Thefunctionreachesamaximumat20τη,forwhichC0~2.9.ThisvalueisinagreementwiththeestimationC0=4±2in[7]andintherangeofvalues(between3and7)usedinstochasticmodelsforparticledispersion[14].Inourcasetheremayalsobeabiasatsmalltimesduetoparticlee ects.Howeverifweassumetheexponential tforthevelocityautocorre-lationfunctiontobevaliddowntothesmallestscales,weobtainavalueC0=3.5asanupperboundforthe

maximumofDL

(τ)/ τ.Inoursetofmeasurementsbe-tweenR2

λ=100andRλ=1100,wehaveobservedanincreaseofC0(de nedinthesameway)from0.5to4.WepointoutthatintheabsenceofanequivalentoftheK´arm´an-HowarthrelationshipfortheLagrangiantimeincrements,alimitvalueofC0isnotapriori xed.

DimensionalanalysisyieldsDL

2(τ)=C0(Re) τandsimi-larityargumentsgiveC0(Re)→const.orC0(Re)→Reαinthelimitofin niteReynoldsnumbers.

3

TofurtherdescribethestatisticsoftheLagrangianve-locity uctuations,wehaveanalyzedthestatisticsofthevelocityincrements τv.TheirPDFΠτforτcoveringtheaccessiblerangeoftimescalesisshowninFig.3.

FIG.3:PDFστΠτofthenormalizedincrement vτ/στ.Thecurvesareshiftedforclarity.Fromtoptobottom:τ=[0.15,0.3,0.6,1.2,2.5,5,10,20,40]ms.

Toemphasizethefunctionalform,thevelocityincre-mentshavebeennormalizedbytheirstandarddeviationsothatallPDFshaveunitvariance.A rstobservationisthatthePDFsaresymmetric,inagreementwiththelocalsymmetriesthis ow.AnotheristhatthePDFsal-mostGaussianatintegraltimescalesandprogressivelydevelopstretchedexponentialtailsforsmalltimeincre-ments.Atthesmallestincrement,thestretchedexpo-nentialshapeisinagreementwithmeasurementsofthePDFofLagrangianaccelerationatidenticalReynoldsnumbers[10].Inourcase,thelimitformofthevelocityincrementsPDFisnotaswideasthatoftheaccelerationbecausetheKolmogorovscaleisnotresolved.NotethatinregardsoftheevolutionofthePDF,theintermittencyisatleastasdevelopedintheLagrangianframeasitisintheEulerianone[15].

FIG.4:EvolutionoftheexcesskurtosisfactorK(τ)= ( τv)4 / ( τv)2 2 3forthePDFsofthetimevelocityincrements.

Thecontinuousevolutionwithscalecanbequanti ed

We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynold

usingthe atnessfactor.WeshowinFig.4thevari-ationexcesskurtosisK(τ)= ( τv)4 / ( τv)2 2 3.ItisnullatintegralscaleasexpectedfromtheGaus-sianshapeofthePDFandincreasessteeplyatsmallscales.Belowabout5τη,theincreaseislimitedbythecut-o oftheparticle;anextrapolationofthetrendtoτηyieldsK(τη)

Measurement of Lagrangian velocity in fully developed turbul(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:现代项目风险管理__电子教案

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: