Measurement of Lagrangian velocity in fully developed turbul(3)

2021-09-24 14:32

~40inagreementwithaccelerationmea-surementsin[10].

10

L

q

D10

10

DL

10

FIG.5:ESSplotsofthestructurefunctionvariation(indou-blelogcoordinates).Thesolidcurvesarebestlinear tswith

slopesequaltoξL

q=0.56±0.01,1.34±0.02,1.56±0.06,1.8±0.2forp=1,3,4,5fromtoptobottom.Coordinatesinarbitraryunits.

Moregenerally,onecanchoosetodescribetheevolu-tionofthePDFsbythebehavioroftheirmoments(or

‘structurefunctions’)DL

changeofq(τ)= |δτv|q .Indeed,acon-sequenceoftheshapeofthePDFswithscaleisthattheirmoments,asthe atnessfactorabove,varywithscale.ClassicallyintheEulerianpicture,oneex-pectsscalingintheinertialrange,DE

q(r)∝rζq,atleastinthelimitofverylargeReynoldsnumbers.Atthe -niteReynoldsnumberwheremostexperimentsaremade,thelackofatrueinertialrangeisusuallycompensatedbystudyingtherelativescalingofthestructurefunc-tions–theESSansatz[16].Weusethesecondorderstructurefunctionasareference.Indeedthedimensional

estimationofDL2(asthatofDE

3)dependslinearlyontheincrementandonthedissipation.Fig.5showsthat,asintheEulerianframe,arelativescalingisobservedfortheLagrangianstructurefunctionsoforders1to5,DLq(τ)∝DL2(τ)ξq.Weobservethattherelativeexpo-nentsfollowasequencecloseto,butmoreintermittentthanthecorrespondingEulerianquantity.Indeed,we

obtain:ξLL

L/ξLξ1/ξ3=0.42,ξ3=0.75,ξL/ξLL3=1.17,5

/ξL

2

43=1.28tobecomparedtothecommonlyac-4

ceptedEulerianvalues[17]ξEξ1/ξE3=0.36,ξE2/ξE

3=0.70,E4/ξE3=1.28,ξE5/ξE

3=1.53.

Inconclusion,usinganewexperimentaltechnique,wehaveobtainedaLagrangianvelocitymeasurementthatcoverstheinertialrangeofscales.OurresultsareconsistentwithKolmogorov-likedimensionalpredictionsforsecondorderstatisticalquantities.Athigherorders,theobservedintermittencyisverystrong.HowtheLagrangianintermittencyisrelatedtothestatisticalpropertiesoftheenergytransfersisanopenquestion.Fromadynamicalpointofview,theNavier-StokesequationinLagrangiancoordinatescouldbemodeledusingstochasticequations.WorkiscurrentlyunderwaytocomparethedynamicsoftheLagrangianvelocitytopredictionsofLangevin-likemodels.

acknowledgements:WethankBernardCastaingforinterestingdiscussionsandVermonCorporationforthedesignoftheultrasonictransducers.Thisworkissup-portedbygrantACINo.2226fromtheFrenchMinist`eredelaRecherche.

[1]PopeS.B.,Annu.Rev.FluidMech.,26,23,(1994).

[2]VirantM.,DracosT.,Meas.Sci.Technol.,8,1539,

(1997).

[3]SatoY.,YamamotoK.,J.FluidMech.,175,183,(1987).[4]YeungP.K.,PopeS.B.,J.FluidMech.,207,531,(1989).[5]LienR-C.,D’AsaroE.A.,DairikiG.T.,J.Fluid.Mech.,

362,177,(1998).

[6]YeungP.K.,J.FluidMech.,427,241,(2001).[7]HannaS.R.,J.Appl.Meteorol.,20,242,(1981).[8]SawfordB.L.,Phys.Fluids,A3,1577,(1991).

[9]VothG.A.,SatyanarayanK.,BodenschatzE.,Phys.Flu-ids,10,2268,(1998).

[10]LaPortaA.,VothG.A.,CrawfordA.,AlexenderJ.,Bo-denschatzE.,Nature,409,1017,(2001).

[11]MordantN.,MichelO.,PintonJ.-F.,submittedtoJASA,

(2000)andArXiv:physics/0103083.[12]MordantN.,PintonJ.-F.,Chill`aF.,J.Phys.IIFrance,

7,1729-1742,(1997).[13]Mal´ecotY.PhDThesis,Universit´edeGrenoble,(1998).[14]DuS.,SawfordB.L.,WilsonJ.D.,WilsonD.J.,Phys.

Fluids,7,3083,(1995).

[15]AnselmetF.,GagneY.,Hop ngerE.J.,AntoniaR.A.J.

FluidMech.,140,63,(1984).

[16]BenziR.,CilibertoS.,BaudetC.,Ruiz-ChavarriaG.,

TripiccioneC.,Europhys.Lett,24,275,(1993).[17]ArneodoA.etal.,Europhys.Lett,34,411,(1996).


Measurement of Lagrangian velocity in fully developed turbul(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:现代项目风险管理__电子教案

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: