1到2到3过程中 绳剪断后台称示数 (13除外)超重状态 系统重心向下加速
斜面对地面的压力? 铁木球的运动
地面对斜面摩擦力? 用同体积的水去补充 导致系统重心如何运动 轻绳、杆模型
绳只能承受拉力,杆能承受沿杆方向的拉、压、横向及任意方向的力
杆对球的作用力由运动情况决定
只有?=arctg(a/g)时才沿杆方向 最高点时杆对球的作用力
最低点时的速度?,杆的拉力?
换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失,再下摆机
械能守恒
假设单B下摆,最低点的速度VB=2gR ?mgR=整体下摆2mgR=mg
12mvB 21R1\'2\'2+mvA?mvB
222第 7 页 共 147 页
VB?2VA ? VA=
\'\'\'36\'\'gR ; VB2gR> VB=2gR ?2VA=55所以AB杆对B做正功,AB杆对A做负功
若 V0
求水平初速及最低点时绳的拉力?
动量守恒:内容、守恒条件、不同的表达式及含义: 列式形式:p?p;?p?0;?p1?-?p2 实际中的应用:m1v1+m2v2=m1v1?m2v2; 0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v共 注意理解四性:系统性、矢量性、同时性、相对性
解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(有时先要规定正方向)求解并讨论结果。 碰撞模型:特点?和注意点: ①动量守恒;
②碰后的动能不可能比碰前大;
③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。 m1v1+m2v2=
\'m1v1?m2v\'2\'\'\' (1)
2m1Ek1?2m2EK2?2m1E\'K1?2m2E\'K2
P12P22P1\'2P2\'2111122\'2\'2??= mv1?mv2?mv1?mv2 (2 )
2m12m22m12m222222m2v2?(m1-m2)v12m1v1?(m2-m1)v2\'\'v1= v2=
m1?m2m1?m212一动一静的弹性正碰:即m2v2=0 ;m2v2=0 代入(1)、(2)式
2(m1-m2)v12m1v1\'\' v1=(主动球速度下限) v2=(被碰球速度上限)
m1?m2m1?m2第 8 页 共 147 页
若m1=m2,则 ,交换速度。 m1>>m2,则 。
m1<
一动一静:若v2=0, m1=m2时, 。 m1>>m2时, 。
m1<
一动静的完全非弹性碰撞(子弹打击木块模型)重点 mv0+0=(m+M)v v=
mv0(主动球速度上限,被碰球速度下限)
m?M2mMv011112\'22\'2 mv0=(m?M)v+E损 E损=mv0一(m?M)v=
2(m?M)2222\'\'由上可讨论主动球、被碰球的速度取值范围
(m1-m2)v12m1v1mv0mv0
m1?m2m1?m2m?Mm?M讨论:①E损 可用于克服相对运动时的摩擦力做功转化为内能 E
损
=fd
相
=
?mg·d
相
2mMv0112\'2=mv0一(m?M)v=? d
2(m?M)22相
22mMv0mMv0== 2(m?M)f2?g(m?M)②也可转化为弹性势能; ③转化为电势能、电能发热等等
人船模型:
一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从动量守恒
mv=MV ms=MS s+S=d ?s=
机械振动、机械波:
基本的概念,简谐运动中的力学运动学条件及位移,回复力,振幅,周期,频率及在一次全振动过程中各物理量的变化规律。
第 9 页 共 147 页
MLmM? d
mLMm?M单摆:等效摆长、等效的重力加速度 影响重力加速度有: ①纬度,离地面高度
②在不同星球上不同,与万有引力圆周运动规律(或其它运动规律)结合考查 ③系统的状态(超、失重情况)
④所处的物理环境有关,有电磁场时的情况
⑤静止于平衡位置时等于摆线张力与球质量的比值 注意等效单摆(即是受力环境与单摆的情况相同) T=2?L4?2L ?g= 应用:T1=2?gT2LO T2=2?gLO-?L4?2?L ?g?2 gT1-T22沿光滑弦cda下滑时间t1=toa=
2RR?2 gg沿ced圆弧下滑t2或弧中点下滑t3: t2=t3=共振的现象、条件、防止和应用
机械波:基本概念,形成条件、
T2?=44R?=g2R g特点:传播的是振动形式和能量,介质的各质点只在平衡位置附近振动并不随波迁移。 ①各质点都作受迫振动,
②起振方向与振源的起振方向相同, ③离源近的点先振动,
④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长
波长的说法:①两个相邻的在振动过程中对平衡位置“位移”总相等的质点间的距离
②一个周期内波传播的距离 ③两相邻的波峰(或谷)间的距离
④过波上任意一个振动点作横轴平行线,该点与平行线和波的图象的第二个交点之间的距离为一个波长
波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=?/T=?f 波速与振动速度的区别 波动与振动的区别:
研究的对象:振动是一个点随时间的变化规律,波动是大量点在同一时刻的群体表现, 图象特点和意义 联系:
波的传播方向?质点的振动方向(同侧法、带动法、上下波法、平移法) 知波速和波形画经过(?t)后的波形(特殊点画法和去整留零法)
第 10 页 共 147 页
波的几种特有现象:叠加、干涉、衍射、多普勒效应,知现象及产生条件
热学 分子动理论:
①物质由大量分子组成,直径数量级10-10m 埃A 10-9m纳米nm ,单分子油膜法 ②永不停息做无规则的热运动,扩散、布朗运动是固体小颗粒的无规则运动它能反映出液体分子的运动
③分子间存在相互作用力,注意:引力和斥力同时存在,都随距离的增大而减小,但斥力变化得快。分子力是指引力和斥力的合力。
热点:由r的变化讨论分子力、分子动能、分子势能的变化
物体的内能:决定于物质的量、t 、v 注意:对于理想气体,认为没有势能,其内能只与温度有关,
一切物体都有内能(由微观分子动能和势能决定而机械能由宏观运动快慢和位置决定) 有惯性、固有频率、都能辐射红外线、都能对光发生衍射现象、对金属都具有极限频率、对任何运动物体都有波长与之对应(德布罗意波长)