35kV变电所电气部分设计
方案一35kV侧采用的单母线接线,接线简单清晰、设备少、操作方便、便于扩建和采用成套配电装置。10kV采用单母线分段连线,对重要用户可从不同段引出两个回路,当一段母线发生故障,分段断路器自动将故障切除,保证正常母线供电不间断,所以此方案同时兼顾了可靠性,灵活性,经济性的要求。
方案二图:
进线 进线 #1 #2#1进线#2进线 图5.2 电器主接线方案二图
方案二10kV侧通过双母线虽然可以使供电更可靠,调度更加灵活,,但每增加一组母线就使每回路需要增加一组母线隔离开关,当母线故障或检修时,隔离开关作为倒换操作电器,容易误操作。并且,带设计边变电所的负荷均每什么一类、二类负荷,没必要增加投资选择双母线接线。综合考虑:
方案一:35kV侧采用单母线接线,10kV侧采用单母线分段。 方案二:35kV侧采用单母线接线,10kV侧采用双母线接线。
通过比较可以得知还是选方案一比较合适,即35kV侧采用单母线接线,10kV侧采用单母线分段。
第 13 页 共 44 页
35kV变电所电气部分设计
6 短路电流计算
6.1 概述
6.1.1 产生短路的原因和短路的定义
产生短路的主要原因是电器设备载流部分的绝缘损坏。绝缘损坏的原因多因设备过电压、直接遭受雷击、绝缘材料陈旧、绝缘缺陷未及时发现和消除。此外,如输电线路断线、线路倒杆也能造成短路事故。所谓短路时指相与相之间通过电弧或其它较小阻抗的一种非正常连接,在中性点直接接地系统中或三相四线制系统中,还指单相和多相接地。
6.1.2 短路的种类
三相系统中短路的基本类型有:三相短路、两相短路、单相接地短路、和两相接地短路。三相短路时对称短路,此时三相电流和电压同正常情况一样,即仍然是对称的。只是线路中电流增大、电压降低而已。除了三相短路之外,其它类型的短路皆系不对称短路,此时三相所处的情况不同,各相电流、电压数值不等,其间相角也不同。
运行经验表明:在中性点直接接地的系统中,最常见的短路是单相短路,约占短路故障的65~70%,两相短路约占10~15%,两相接地短路约占10~20%,三相短路约占5%
6.1.3 短路电流计算的目的
1电气主接线比选;2选择导体和电器;3确定中性点接地方式;4计算软导体的短路摇摆;5确定分裂导线间隔棒的间距;6验算接地装置的接触电压和跨步电压;7选择继电保护装置和进行整定计算。
第 14 页 共 44 页
35kV变电所电气部分设计
6.2 短路电流计算的方法和条件
6.2.1 短路电流计算方法
电力系统供电的工业企业内部发生短路时,由于工业企业内所装置的元件,其容量比较小,而其阻抗较系统阻抗大得多,当这些元件遇到短路情况时,系统母线上的电压变动很小,可以认为电压维持不变,即系统容量为无穷大。所谓无限容量系统是指容量为无限大的电力系统,在该系统中,当发生短路时,母线电业维持不变,短路电流的周期分量不衰减。当然,容量所以们
在这里进行短路电流计算方法,以无穷大容量电力系统供电作为前提计算的,其步骤如下:
1对各等值网络进行化简,求出计算电抗; 2求出短路电流的标么值; 3归算到各电压等级求出有名值。 6.2.2 短路电流计算条件
1短路电流实用计算中,采用以下假设条件和原则: (1)正常工作时,三相系统对称运行; (2)所有电源的电动势相位角相同;
(3)系统中的同步和异步电机均为理想电机,不考虑电机磁饱和、磁滞、涡流及导体集肤效应等影响,转子结构完全对称,定子三相绕组空间位置相差120度电气角度;
(4)电力系统中的各元件的磁路不饱和,即带铁芯的电气设备电抗值不随电流大小发生变化;
(5)电力系统中所有电源都在额定负荷下运行,其中50%负荷接在高压母线上,50%负荷接在系统侧;
(6)同步电机都具有自动调整励磁装置(包括强行励磁); (7)短路发生在短路电流为最大值的瞬间;
(8)不考虑短路点的电弧阻抗和变压器的励磁电流;
(9)除计算短路电流的衰减时间常数和低压网络的短路电流外,元件的都略去
第 15 页 共 44 页
35kV变电所电气部分设计
不计;
(10)元件的计算参数均取为额定值,不考虑参数的误差和调整范围; (11)输电线路的电容略去不计;
(12)用概率统计法制定短路电流运算曲线。 2接线方式
计算短路电流时所用的接线方式,应是可能发生最大短路电流的正常接线方 式,而不能用仅在切换过程中可能并联运行的接线方式。
3计算容量
应按本工程设计的规划容量计算,并考虑电力系统的远景发展规划。
4短路点的种类
一般按三相短路计算,若发电机的两相短路时,中性点有接地系统的以及自耦变压器的回路中发生单相(或两相)接地短路较三相短路情况严重时,则应按严重情况的时候进行计算。
5短路点位置的选择
短路电流的计算,为选择电气设备提供依据,使所选的电气设备能在各种情况下正常运行,因此短路点的选择应考虑到电器可能通过的最大短路电流。为了保证选择的合理性和经济性,不考虑极其稀有的运行方式。取最严重的短路情况分别在10kV侧的母线和35kV侧的母线上发生短路情况(点a和点b发生短路)。则选择这两处做短路计算。
b a 图6.1 短路点选择图
第 16 页 共 44 页
35kV变电所电气部分设计
6.3 短路电流的计算
6.3.1 10kV侧短路电流的计算
图中a点短路,由于A,B系统短路容量都很大,可以近似都看作为无穷大系统电源系统。
取Sj=100MW,Uj1=37kV,Uj2=10.5kV。由公式
I=
S3U 求的Ij1=1.56kA,Ij2=5.50kA。 线路等效图如下图所示:
E1 E2X1X2XTXTa图6.2 10kV侧短路等效图
线路1 X1=
XLL1SBU2 B=0.4*5*100/372=0.1461
线路2 XLL2SB2=
XU2 B第 17 页 共 44 页
6-1)6-2) (
(