①当△PBC∽△OBE时,
PBBC63?x10?,即,解得x?, ?5OBBE53103∴点P的坐标为P··································································5分 1(,0);·②当△PBC∽△EBO时,
65PBBC233?x10?,即,解得x??, ?53EBBO3103∴点P的坐标为P2(?23,0); ······························································6分 3③∵∠OBC?∠AOE,
623∴不存在点P在点B右侧的情况.综上所述,存在点P的坐标为P,(,0)P(?,0). 1253 ·······································································································7分
(3)要使△EBQ的面积最大,则点Q到直线BE的距离最大时,过点Q的直线与直线BE平行,且与抛物线相切.
如图(1),当点Q在C1上时,
11x?b1,则点Q坐标为(x,x?b1), 331212111代入C1?x?3,得x2?3?x?b,化简得x?x?3?b?0,
33333设与抛物线相切的直线为:y1?∵相切,∴只有一个交点,
37, 1213712135∴y1?x?,与C1?x?3联立方程组,解得Q(,?),
3123212∴??0,解得b1??过Q作x轴的垂线,交直线BE于点M,
1115代入y?x?1,可得M(,?), 232653525∴MQ???(?)?,
61212125125?(2?3)?∴这时△EBQ面积的最大值为:?; ·························8分 21224把x?数学试题 第11页(共12页)
如图(2),当点Q在C2上时,
11x?b2,则点Q坐标为(x,x?b2), 3312121代入C2??x?1,得?x?x?1?b2?0,
9935∵相切,∴只有一个交点,∴??0,解得b2?,
4151233∴y2?x?,与C2??x?1联立方程组,解得Q(?,),
34924设与抛物线相切的直线为:y2?连接EQ,交x轴于点N, 解得直线EQ的解析式为y2?得N点坐标为(?∴NB?3?(?48,0), 2929x?8, 648135, )?29291135?35?13545???(?)???∴这时△EBQ面积的最大值为:?;
229?43?248∵
45125, ?824∴△EBQ面积的最大值为
4533,这时Q(?,). ··········································9分
248数学试题 第12页(共12页)