二次函数的增减性
1.二次函数y=3x2-6x+5,当x>1时,y随x的增大而 ;当x<1时,y随x的增大而 ;当x=1时,函数有最 值是 。
2.已知函数y=4x2-mx+5,当x> -2时,y随x的增大而增大;当x< -2时,y随x的增大而减少;则x=1时,y的值为 。
3.已知二次函数y=x2-(m+1)x+1,当x≥1时,y随x的增大而增大,则m的取值范围是 .
15
4.已知二次函数y=-x2+3x+ 的图象上有三点A(x1,y1),B(x2,y2),C(x3,y3)且3<x1<x2<x3,则y1,y2,y3的大小关系
22
为 .
二次函数的平移
技法:只要两个函数的a 相同,就可以通过平移重合。将二次函数一般式化为顶点式y=a(x-h)+k,平移规律:左加右减,对x;上加下减,直接加减
3
6.抛物线y= - x2向左平移3个单位,再向下平移4个单位,所得到的抛物线的关系式为 。
2
7.抛物线y= 2x2, ,可以得到y=2(x+4}2-3。 8.将抛物线y=x2+1向左平移2个单位,再向下平移3个单位,所得到的抛物线的关系式为。
2
9.如果将抛物线y=2x-1的图象向右平移3个单位,所得到的抛物线的关系式为 。 10.将抛物线y=ax2+bx+c向上平移1个单位,再向右平移1个单位,得到y=2x2-4x-1则a= ,b= ,c= .
2
11.将抛物线y=ax向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为 _.
2
函数的交点
11.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为 。 12.直线y=7x+1与抛物线y=x2+3x+5的图象有
函数的的对称
13.抛物线y=2x2-4x关于y轴对称的抛物线的关系式为 。 14.抛物线y=ax2+bx+c关于x轴对称的抛物线为y=2x2-4x+3,则 a= b= c=
函数的图象特征与a、b、c的关系
1.已知抛物线y=ax2+bx+c的图象如右图所示,则a、b、c的符号为( ) A.a>0,b>0,c>0 B.a>0,b>0,c=0
C.a>0,b<0,c=0 D.a>0,b<0,c<0
2.已知抛物线y=ax2+bx+c的图象2如图所示,则下列结论正确的是( ) A.a+b+c> 0 B.b> -2a C.a-b+c> 0 D.c< 0
3.抛物线y=ax2+bx+c中,b=4a,它的图象如图3,有以下结论:
2
①c>0; ②a+b+c> 0 ③a-b+c> 0 ④b-4ac<0 ⑤abc< 0 ;其中正确的为( )
A.①② B.①④ C.①②③ D.①③⑤
4.当b<0是一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系内的图象可能是( )
2
5.已知二次函数y=ax+bx+c,如果a>b>c,且a+b+c=0,则它的图象可能是图所示的( )