∵BE∥AD,∴∠E =∠EDA. ∴∠EDA =∠DAC. ∴ED∥AC.
解:(2)∵BE∥AD,∴∠EBD =∠ADC.
∵∠E =∠DAC,
∴△EBD∽△ADC,且相似比k?∴
S1?k2?4,即S1?4S2. S22BD?2. DC∵S12?16S2?4?0,∴16S22?16S2?4?0,即?4S2?2??0.
1. 2SBCBD?CD3CD3???3,∴S?ABC?. ∵?ABC?S2CDCDCD2∴S2?
∵BE∥AD,∴∠E =∠EDA. ∴∠EDA =∠DAC. ∴ED∥AC.
解:(2)∵BE∥AD,∴∠EBD =∠ADC.
∵∠E =∠DAC,
∴△EBD∽△ADC,且相似比k?∴
S1?k2?4,即S1?4S2. S22BD?2. DC∵S12?16S2?4?0,∴16S22?16S2?4?0,即?4S2?2??0.
1. 2SBCBD?CD3CD3???3,∴S?ABC?. ∵?ABC?S2CDCDCD2∴S2?
下一篇:乐清课题研究管理手册范本